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Abstract

Industrial smoke emissions pose a significant concern to hu-
man health. Prior works have shown that using Computer Vi-
sion (CV) techniques to identify smoke as visual evidence can
influence the attitude of regulators and empower citizens to
pursue environmental justice. However, existing datasets are
not of sufficient quality nor quantity to train the robust CV
models needed to support air quality advocacy. We introduce
RISE, the first large-scale video dataset for Recognizing
Industrial Smoke Emissions. We adopted a citizen science
approach to collaborate with local community members to
annotate whether a video clip has smoke emissions. Our
dataset contains 12,567 clips from 19 distinct views from
cameras that monitored three industrial facilities. These day-
time clips span 30 days over two years, including all four
seasons. We ran experiments using deep neural networks to
establish a strong performance baseline and reveal smoke
recognition challenges. Our survey study discussed commu-
nity feedback, and our data analysis displayed opportunities
for integrating citizen scientists and crowd workers into the
application of Artificial Intelligence for Social Impact.

Introduction
Air pollution has been associated with adverse impacts on
human health (Kampa and Castanas 2008; Pope III and
Dockery 2006; Dockery et al. 1993). According to the
United States Environmental Protection Agency (US EPA),
air pollutants emitted from industrial sources pose a signifi-
cant concern1. Currently, citizens who wish to advocate for
better air quality rely on a manual approach (US EPA Vi-
sual Opacity Reading2) to determine if smoke emissions vio-
late the permit issued to the facility. This laborious approach
requires certification every six months and involves taking
multiple field measurements. Prior works have shown that
using Computer Vision to identify industrial smoke emis-
sions automatically can empower citizens to pursue environ-
mental justice and urge regulators to respond to local con-
cerns publicly (Hsu et al. 2016, 2017). This type of data-
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1Link to US EPA Air Pollution Sources:
https://www.epa.gov/stationary-sources-air-pollution

2Link to US EPA Visual Opacity Reading:
https://www.epa.gov/emc/method-9-visual-opacity

Figure 1: Dataset samples and the deployed camera system.

driven evidence, when integrated with community narra-
tives, is essential for citizens to make sense of environmental
issues and take action (Ottinger 2017; Hsu et al. 2017).

However, it is tough to collect large-scale data required
to build a practical industrial smoke recognition model. Re-
cent state-of-the-art models based on deep learning typically
have millions of parameters and are data-hungry. Training
these models with insufficient data can lead to overfitting.
Table 1 lists publicly available datasets for smoke recog-
nition. Compared to object and action recognition datasets,
such as ImageNet (14M images, Russakovsky et al. 2015)
and Kinetics (650K videos, Kay et al. 2017), existing ones
for smoke recognition are small. There have been suc-
cesses in prior works using deep learning for smoke recog-
nition (Yuan et al. 2019a; Ba et al. 2019; Xu et al. 2017,
2019a,b; Filonenko, Kurnianggoro, and Jo 2017; Liu et al.
2019; Yin et al. 2017; Yang et al. 2018; Lin et al. 2019; Hu
and Lu 2018; Zhang et al. 2018), but these models were
trained and evaluated on relatively small datasets. In re-
sponse to data sparsity, some works have attempted to cre-
ate artificial data, where smoke with a transparent back-
ground were synthesized with various views (Yuan et al.
2019b; Zhang et al. 2018; Xu et al. 2019a). But such syn-
thetic data cannot capture the rich behavior and appear-
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This Work 19 12,567 452,412 36 41% yes yes yes high

Bugaric et al. 2014 10 10 213,909 21,391 100% yes yes no low
Ko et al. 2013 16 16 43,090 1,514 37% yes yes no low
Dimitropoulos et al. 2014 22 22 17,722 806 56% yes yes no low
Toreyin et al. 2005 21 21 18,031 820 98% yes yes no low
Filonenko et al. 2017* ... 396 100,968 255 61% yes no no low

Xu et al. 2019b ... ... 5,700 ... 49% no yes no low
Xu et al. 2019a ... ... 3,578 ... 100% no yes no low
Xu et al. 2017 ... ... 10,000 ... 50% no yes no low
Ba et al. 2019*† ... ... 6,225 ... 16% no no unknown medium
Lin et al. 2017* ... ... 16,647 ... 29% no no no low
Yuan et al. 2019a* ... ... 24,217 ... 24% no no no low

Table 1: Comparison of publicly available datasets for recognizing smoke. This table does not include unlabeled or synthetic
data. Symbol “...” means not applicable, where the corresponding datasets are image-based. The * symbol means that the
dataset provides labels on image patches that do not provide sufficient context for the surroundings. The † symbol means
that the dataset uses satellite images, and therefore the sources of smoke emissions are unidentifiable. We used the ffprobe
command in FFmpeg to count video frames. Some datasets treat steam as smoke, and we counted the number of smoke frames
within these datasets based only on videos that do not involve steam. Moreover, some datasets contain videos for fire detection,
and we did not count them in this table, since fire detection was not our focus in this research.

ance of smoke under real-world conditions, such as chang-
ing weather. Moreover, existing smoke-recognition datasets
lack sufficient quality for our task. No existing ones contain
smoke emissions from industrial sources. Most of them are
from burning materials (e.g., in labs) and fire events (e.g.,
wildfire), which have low temporal appearance changes.
Thirty-six percent of them are imbalanced (ratio of smoke
frames higher than 80% or less than 20%). The average
number of frames per labeled clip is high in them, indicating
weak temporal localization.

This paper introduces RISE, the first large-scale video
dataset for Recognizing Industrial Smoke Emissions. We
built and deployed camera systems to monitor activities of
various industrial coke plants in Pittsburgh, Pennsylvania
(Figure 1). We collaborated with air quality grassroots com-
munities to install the cameras, which capture an image
about every 10 seconds. These images were streamed back
to our servers, stitched into panoramas, and stacked into
timelapse videos. From these panorama videos, we cropped
clips based on domain knowledge about where smoke emis-
sions frequently occur. Finally, these clips were labeled as
yes/no (“whether smoke emissions exist”) by volunteers us-
ing a web-based tool that we developed (Figure 3 and 4).

Our contributions include: (1) building a dataset to facil-
itate using AI for social impact, (2) showing a way to em-
power citizens through AI research, and (3) making practi-
cal design challenges explicit to others. RISE contains clips
from 30 days spanning four seasons over two years, all taken
in daylight. The labeled clips have 19 views cropped from
three panoramas taken by cameras at three locations. The
dataset covers various characteristics of smoke, including
opacity and color, under diverse weather and lighting con-
ditions. Moreover, the dataset includes distractions of var-

ious types of steam, which can be similar to smoke and
challenging to distinguish. We use the dataset to train an
I3D ConvNet (Carreira and Zisserman 2017) as a strong
baseline benchmark. We compare the labeling quality be-
tween citizen scientists and online crowd workers on Ama-
zon Mechanical Turk (MTurk). Using a survey study, we
received community feedback. The code and dataset3 are
open-source, as is the video labeling system4.

Related Work
A set of prior work relied on physics or hand-crafted features
to recognize smoke. Kopilovic et al. (2000) computed the
entropy of optical flow to identify smoke. Celik et al. (2007)
used color to define smoke pixels. Toreyin et al. (2005) com-
bined background subtraction, edge flickering, and texture
analysis. Lee et al. (2012) used change detection to extract
candidate regions, computed features based on color and
texture, and trained a support vector machine classifier us-
ing these features. Tian et al. (2015) presented a physical-
based model and used sparse coding to extract reliable fea-
tures for single-image smoke detection. Gubbi et al. (2009)
and Calderara et al. (2008) applied texture descriptors (such
as a wavelet transform) on small image blocks to obtain fea-
ture vectors and train a classifier using these features. These
works relied on heuristics to tune the hand-crafted features,
which makes it tough to be robust (Hsu et al. 2016).

Another set of prior work developed or enhanced various
deep learning architectures for smoke recognition. For ex-
ample, Yuan et al. (2019b) trained two encoder-decoder net-

3Link to the Dataset and Code:
https://github.com/CMU-CREATE-Lab/deep-smoke-machine

4Link to the Video Labeling System:
https://github.com/CMU-CREATE-Lab/video-labeling-tool



# of labeled clips Ratio

Has smoke 5,090 41%

Winter (Dec to Feb) 7,292 58%
Spring (Mar to May) 1,057 8%
Summer (Jun to Aug) 2,999 24%
Fall (Sep to Nov) 1,219 10%

6 am to 10 am 4,001 32%
11 am to 3 pm 6,071 48%
4 pm to 8 am 2,495 20%

Table 2: The number and ratio of video clips for all 19 cam-
era views filtered by various temporal conditions.

works to focus on global contexts and fine details, respec-
tively, for smoke region segmentation. Hu and Lu (2018)
trained spatial-temporal ConvNets using multi-task learn-
ing. Liu et al. (2019) classified smoke by fusing ResNet and
ConvNet trained with the original RGB and Dark Channel
images (He, Sun, and Tang 2010), respectively. Other work
applied or enhanced object detectors, such as SSD (Liu et al.
2016), MS-CNN (Cai et al. 2016), Faster R-CNN (Ren et al.
2015), and YOLO (Redmon and Farhadi 2017), to identify
regions that have smoke (Xu et al. 2019a; Zhang et al. 2018;
Yang et al. 2018; Lin et al. 2019). These works were evalu-
ated on small datasets (Table 1), and none of them collabo-
rated with local communities in air quality advocacy.

We employed citizen science (Shirk et al. 2012) to si-
multaneously empower laypeople and build a large dataset.
Citizen science has been successfully applied in science
projects, especially when the research scale makes it infeasi-
ble for experts to tackle alone. For example, PlantNet invites
volunteers to submit images to develop a plant species clas-
sification model (Joly et al. 2016). In PlantNet, experts de-
fine research questions and invite citizens to participate. On
the other hand, we utilized data-driven evidence to address
concerns of local communities. Specifically, we applied a
civic-oriented framework, Community Citizen Science (Hsu
and Nourbakhsh 2020), to empower citizens affected by in-
dustrial pollution to advocate for better air quality.

RISE Dataset
Unlike static data annotation projects, RISE is powered
by local communities, where multiple factors can influ-
ence the data distribution (explained in the Discussion sec-
tion). The RISE dataset has 12,567 labeled clips from in-
dustrial sources, including those emitted from stacks and
escaped from facilities. Each clip has 36 frames (resolu-
tion 180x180 pixels), representing about six minutes in real-
world time. These clips contain 19 views (Figure 2), where
15 are cropped from the panorama timelapse at one site, and
four from two other sites. These clips span 30 days from two
years, including all four seasons. They were taken in the day-
time and include different weather and lighting conditions.
Using weather archives and checking the videos, we man-
ually selected these 30 days to include various conditions,
balance the number of videos that have smoke, skip days
when cameras were down, and add hard cases (e.g., snow

days). Of the 30 days, 20 days are cloudy, four days are fair,
six days are a mixture of fair and cloudy, six days have light
rain, four days have light snow, two days are windy, and one
day has a thunderstorm. Using domain knowledge, we man-
ually picked the 19 views to cover the locations of smoke
emission sources. Since the length of day is different across
seasons, fewer videos are in the morning (6 am to 10 am) and
evening (4 pm to 8 pm). Table 2 summarizes the dataset.

System for Data Collection
We built and deployed camera systems to monitor pollution
sources (Figure 1). Each system had a Nikon 1 J5 camera
controlled by Raspberry Pi. It had a heater and cooler to con-
trol temperature and a servo motor to enable remote power
cycling. The cost per camera was about $2,000 US dollars.
The camera took a photo about every 5 to 10 seconds, and
the photos were streamed to a server for stitching and stack-
ing into panorama timelapse videos. Areas in videos that
look inside house windows were cropped or blocked.

Deploying cameras relied heavily on citizen engagement.
To build relationships and mutual trust between our organi-
zation and the community, we canvassed the local region,
met with affected residents, and attended local events (e.g.,
community meetings) to explain our mission. We installed
the equipment and offered complimentary internet service
to those residents willing to host cameras.

We chose to use timelapse instead of video capturing due
to real-world deployment constraints. We deployed 10 cam-
era systems. To zoom into locations of emission sources, our
camera captured each photo in 5K resolution. Using video
capturing meant streaming 10 high-resolution videos back
to our server, which would be impractical since many cam-
era locations did not have the high-speed internet infras-
tructure to enable such large data-transmission bandwidth.
Moreover, our 10 cameras produced about 600 GB data per
day. Recording videos in 20 frames per second would gen-
erate 120 TB data per day, which was beyond our system’s
storage space and computational power.

System for Data Annotation
We applied citizen science (Shirk et al. 2012; Irwin 2002)
to engage volunteers in this research and develop a web-
based tool that allows volunteers to annotate data. Citizen
science opens opportunities to collaborate with residents and
advocacy groups who have diverse expertise in local con-
cerns. Through two workshops with air quality advocates,
three presentations during community events, and two guest
lectures at universities, we recruited volunteers to help la-
bel smoke emissions. The design and use of this tool were
iteratively refined based on community feedback. For exam-
ple, many volunteers mislabeled smoke initially during the
workshops, suggesting that the task can be challenging for
those unfamiliar with the US EPA Visual Opacity Reading.
Thus, we implemented an interactive tutorial to introduce
the task with step-by-step guidance. Users are first presented
with simplified tasks that explain concepts, such as the char-
acteristics of smoke and the difference between smoke and
steam. After performing each small task, the system shows
the answer, explanation, and the location of smoke.



Figure 2: All views of videos in the RISE dataset. The rightmost four views are from different sites pointing at another facility.

Figure 3: The individual mode of the smoke labeling system.
Users can scroll the page and click or tap on the video clips
to indicate that the video has smoke with a red border-box.

Figure 4: The collaborative mode of the smoke labeling sys-
tem. Researchers can confirm citizen-provided labels by us-
ing the dropdown menu below each video.

In our tool, there are two modes for data labeling. The first
one (individual mode) asks volunteers or researchers to la-
bel 16 randomly-chosen video clips at once (Figure 3). Users
can scroll the interface and click or tap on clips to indicate
the presence of smoke emissions. The second one (collab-
orative mode) asks researchers to confirm the labels con-
tributed by volunteers, where citizens’ answers are shown
as prior information, and the researcher can choose to agree
with or override these answers (Figure 4). This mode is de-
signed to reduce researcher’s mental load and increase the
speed of gathering labels at the early stage of system de-
ployment when the number of users is few.

Instead of labeling opacity, we decided to perform the
simpler task of annotating whether smoke exists. Negative
labels mean no smoke, and positive labels mean smoke ap-

pears at some time. This weak labeling approach is more
straightforward for laypeople, which enabled broader citizen
participation. When labeling, we referred to the 16 clips pro-
vided by the system as a page. For quality control, we ran-
domly inserted four gold standards (labeled by a researcher).
The system accepts a page if the volunteer answers all the
gold standards correctly. Otherwise, the page is discarded.
At least one negative and one positive sample are included in
the gold standards to prevent uniform guessing. Also, each
clip was reviewed by at least two volunteers (identified us-
ing Google Analytics tracker). If their answers did not agree,
a third volunteer was asked to review the clip. The system
takes the majority vote of the answers as the final label.

Analysis of User Contribution and Data Quality
The tool was launched in early February 2019. Through
February 24, 2020 (12 months), we had 12,567 labeled clips.
Among them, 42% (5,230) and 20% (2,560) were labeled
by researchers and citizens in the individual mode, and 38%
(4,777) were labeled in the collaborative mode. During the
12-month launch period, we attracted 60 volunteers who
contributed at least one page (with 16 clips) that passed the
system’s quality check. Most of our volunteers received in-
person training from a researcher in a 3-hour workshop. Of
the entire labeled videos, only 193 (less than 2%) had vol-
unteer label disagreement. Table 3 showed that 12% of the
volunteers contributed 86% of the data (the top enthusiast
group). Volunteers in this group had a higher acceptance rate
(≥ 0.5) and a higher number of accepted pages (≥ the aver-
age of all participants). This skewed pattern of contribution
is typical among citizen science projects such as Zooniverse
(https://zooniverse.org), where many volunteers participate
only a few times (Sauermann and Franzoni 2015).

We compared the labels produced by citizens, researchers,
and MTurk workers. For MTurk workers, we randomly sam-
pled 720 clips from 10,625 ones that had been labeled by
both citizens and researchers between February 2019 and
November 2019. We then divided those clips into 60 tasks.
For quality control, we added four randomly-sampled gold
standards to each task. The user interface was identical to the
one used for citizens. Differently, the interactive tutorial is
required for MTurk workers before labeling. We first posted
the tutorial task with 50 assignments to Amazon Mechani-
cal Turk ($1.50 per task). We then posted 60 labeling tasks,
where each task collected five assignments from different



User group # of users Page acceptance rate
∀ group

Page acceptance rate
∀ user

# of accepted pages
∀ group

# of accepted pages
∀ user

Top Enthusiasts 7 (12%) .86 .76±.10 1,491 (86%) 213±328
Other Enthusiasts ... ... ... ... ...
Top Volunteers 41 (68%) .69 .74±.19 218 (13%) 5±5
Other Volunteers 12 (20%) .26 .28±.08 18 (1%) 2±1
All 60 (100%) .81 .65±.25 1,727 (100%) 29±125

Table 3: Analysis of volunteers (excluding the researchers) who contributed at least one page (with 16 clips) that passed the
quality check and was accepted by the system. The format for the 4th and 6th columns is “mean±standard deviation”.

User group Precision Recall F-score

Citizen .98 .83 .90
Filtered MTurk workers .94±.01 .89±.01 .91±.01
All MTurk workers .93±.01 .83±.01 .88±.01

Table 4: The data quality (simulated 100 times) of citizens
and MTurk workers, using researcher labels as the ground
truth based on 720 labeled videos with 392 positive labels.
Filtered MTurk workers’ page acceptance rate is larger than
0.3. The reported format is “mean±standard deviation.”

Cohen’s kappa

Researcher v.s. Citizen .80
Researcher v.s. Filtered MTurk workers .81±.01
Researcher v.s. All MTurk workers .75±.02
Citizen v.s. All MTurk workers .72±.02
Citizen v.s. Filtered MTurk workers .75±.01

Table 5: The inter-rater agreement (simulated 100 times)
between pairs of MTurk workers, citizen, and researcher
groups. The reported format is “mean±standard deviation.”

workers. Only workers who finished the tutorial task could
perform these labeling tasks. The estimated time to complete
a labeling task was 90 seconds. We paid $0.25 per labeling
task, yielding an hourly wage of $15. Fourteen workers were
recruited and accomplished all tasks in about 12 hours.

The data quality between citizens and filtered MTurk
workers is similar. Filtered workers’ page acceptance rates
are better than 0.3 (random guessing is 0.07). To match the
labeling tool’s quality-control mechanism, we randomly se-
lected three assignments for majority voting and simulated
100 times. Using researcher labels as the ground truth, Ta-
ble 4 indicates similar strong performance of the positive
labels (with smoke). The strong Cohen’s kappa in Table 5
shows high inter-rater agreement.

Experiments
We split the dataset into training, validation, and test sets in
six ways (S0 to S5 in Table 6). Most of the splits (except
S3) are based on camera views, where different views are
used for each split. Besides S3, the splitting strategy is that
each view is in the test set at least once, where 15 views
from one site are distributed among the three sets, and four
from two other sites are always in the test set. In this way,

S0 S1 S2 S3 S4 S5

Training .62 .62 .62 .61 .62 .62
Validation .13 .12 .12 .14 .11 .13
Test .25 .26 .26 .25 .26 .25

Table 6: Ratio of the number of videos for each split
(rounded to the nearest second digit). Split S0, S1, S2, S4,
S5 is based on views. Split S3 is based on time sequence.

we can estimate whether the model is robust across views, as
classification algorithms can suffer from overfitting in static
cameras (Beery, Van Horn, and Perona 2018). Split S3 is
based on time sequence, where the farthermost 18 days are
used for training, the middle two days for validation, and the
nearest 10 days for testing. Thus, we can evaluate whether
models trained with data in the past can be used in the future.

We treat our task as an action recognition problem and
establish a baseline by using I3D ConvNet architecture with
Inception-v1 layers (Carreira and Zisserman 2017), a rep-
resentative model for action recognition. The inputs of this
baseline are RGB frames. The model is pretrained on Im-
ageNet (Russakovsky et al. 2015) and Kinetics (Kay et al.
2017) datasets, and then fine-tuned on our training set. Dur-
ing training, we apply standard data augmentation, includ-
ing horizontal flipping, random resizing and cropping, per-
spective transformation, area erasing, and color jittering. We
refer to this baseline as RGB-I3D. The validation set is
used for hyper-parameter tuning. Our baseline models are
optimized using binary cross-entropy loss and Stochastic
Gradient Descent with momentum 0.9 for 2,000 steps. Ta-
ble 8 shows the details of hyper-parameters. All models and
scripts are implemented in PyTorch (Paszke et al. 2017).
Model selection is based on F-score and validation error.

In order to understand the effectiveness of our baseline,
we also train five other models for comparison. RGB-I3D-
ND is the same baseline model without data augmentation.
RGB-SVM exploits Support Vector Machine (SVM) as the
classifier, which takes the pretrained I3D features (without
fine-tuning on our dataset) as input. RGB-I3D-FP is trained
using video clips with frame-wise random permutation.
Flow-I3D has the same network architecture as our base-
line, but processes precomputed TVL1 optical flow frames.
It also conducts the same data augmentation pipeline, except
color jittering. Flow-SVM, similar to RGB-SVM, uses raw
I3D features extracted with optical flow frames.



Model S0 S1 S2 S3 S4 S5 Mean

RGB-I3D .80 .84 .82 .87 .82 .75 .817

RGB-I3D-ND .76 .79 .81 .86 .76 .68 .777
RGB-SVM .57 .70 .67 .67 .57 .53 .618

RGB-I3D-FP .76 .81 .82 .87 .81 .71 .797
Flow-I3D .55 .58 .51 .68 .65 .50 .578
Flow-SVM .42 .59 .47 .63 .52 .47 .517

RGB-TSM .81 .84 .82 .87 .80 .74 .813
RGB-LSTM .80 .84 .82 .85 .83 .74 .813
RGB-NL .81 .84 .83 .87 .81 .74 .817
RGB-TC .81 .84 .84 .87 .81 .77 .823

Table 7: F-scores for comparing the effect of data augmen-
tation and temporal models on the test set for each split. Ab-
breviation ND and FP means no data augmentation and with
frame perturbation, respectively.

Model η
Weight
decay i

Batch
size Milestones

RGB-I3D 0.1 10−6 2 40 (500, 1500)
RGB-TSM 0.1 10−10 1 40 (1000, 2000)
RGB-LSTM 0.1 10−4 1 32 (1000, 2000)
RGB-TC 0.1 10−6 1 32 (1000, 2000)

Table 8: Hyper-parameters. Symbol η is the initial learning
rate, and i is the number of iterations to accumulate gradi-
ents before backward propagation. Milestones are the steps
to decrease the learning rate by a factor of 0.1.

Implementations of these five models are the same as
mentioned. The ConvNets not noted in Table 8 use the same
hyper-parameters as RGB-I3D. Table 7 shows that I3Ds out-
perform SVMs by a large margin, and data augmentation can
improve the performance. Also, permuting frame ordering
does not degrade the performance much, and the flow-based
models perform worse than their RGB counterparts.To fur-
ther understand the challenge of using temporal information,
we train the other five variations based on RGB-I3D with
different temporal processing techniques. RGB-NL wraps
two Non-Local blocks (Wang et al. 2018) in the last In-
ception layer (closest to the output) around the 3D convolu-
tion blocks with a kernel size larger than one. RGB-LSTM
attaches one Long Short-Term Memory layer (Hochreiter
and Schmidhuber 1997) with 128 hidden units after the
last Inception layer. RGB-TSM wraps Temporal Shift mod-
ules (Lin, Gan, and Han 2019) around each Inception layer.
RGB-TC attaches one Timeception layer (Hussein, Gavves,
and Smeulders 2019) after the last Inception layer, using
a 1.25 channel expansion factor. This variation is our best
baseline model (Table 9). We fine-tune the LSTM and TC
variation from the best RGB-I3D model with the I3D layers
frozen. Table 7 shows that these temporal processing tech-
niques do not outperform the baseline model, which con-
firms the challenge of using the temporal information.

To check how our baseline model makes decisions, we vi-
sualize the semantic concept by applying Gradient-weighted

Metric S0 S1 S2 S3 S4 S5 Average

Precision .87 .84 .92 .88 .88 .78 .862
Recall .76 .83 .77 .87 .76 .76 .792
F-score .81 .84 .84 .87 .81 .77 .823
ROC/AUC .90 .94 .94 .95 .92 .91 .927

Table 9: Evaluation of the best baseline model (RGB-TC) on
the test set for each split. ROC/AUC means area under the
receiver operating characteristic curve.

Figure 5: True positives in the test set from split S0. The top
and bottom rows show the original video frame and the over-
laying heatmap of Class Activation Mapping, respectively.

Class Activation Mapping (Selvaraju et al. 2017). It uses the
gradients that flow into the last convolutional layer to gener-
ate a heatmap, highlighting areas that affect the prediction.
Ideally, our model should focus on smoke emissions instead
of other objects in the background (e.g., stacks or facilities).
Figure 5 shows true positives (sampled from 36 frames) for
smoke and co-existence of both smoke and steam.

Survey Study
We conducted a survey to learn how and why volunteers
participate. The survey was online (Google Forms), anony-
mous, voluntary, and had no compensation. We distributed
the survey through community leaders and via email lists
that we curated during the design workshops. We collected
11 responses. Table 10 shows the demographics of the sur-
vey participants. Most of them labeled smoke emissions
(82%) and discussed the project in person with others (82%).

We asked an open-ended question to identify motivations.
Selected quotes are in parentheses. Three participants noted
the importance in advocacy (“It is an essential tool for im-
proving regional air quality”), and two mentioned the desire
to help research (“To help provide more data for researchers
to work with [...]”). Others referred to their background (“I
have been interested in air pollution from local steel mills
since childhood and have wanted to do something about it”),
a desire to push regulators (“[...] it is my hope that we can
use that information to force the regulatory agencies to do a
better job of enforcing clean air regulations”), and a wish to
adopt our system (“[...] hopes that this technology can help
in our monitoring of other industries [...]”).

Although participants believed our system can raise pub-
lic awareness of pollution (“[...] wider marketing to commu-



Age 25-34 35-44 45-54 55-64 65+ Unknown

1 2 2 1 4 1

Table 10: Demographics of 11 survey responses. Four are
female. Eight have college degrees (or above).

nity members not already involved/concerned with AQ ini-
tiatives”), there was a social-technical gap (Ackerman 2000)
between community expectations and the system’s capabil-
ity. For example, in another open-ended question about com-
munity feedback, participants express curiosity about the
correlation between smoke emissions and air quality com-
plaints (“[...] when there are more visible emissions, are
there also more reports of smells?”). Also, participants ex-
pect the information to be useful to policy-makers (“The
videos may even provide motivation for local politicians to
revise emissions regulations in a way that makes them more
strict”). Based on the survey study, more co-design work-
shops are needed to create data-driven evidence for making
social impact, including policy changes.

Discussion
Community Engagement Challenges. Citizen science can
empower residents to address air pollution (Hsu et al. 2019,
2017), but engaging communities is challenging. For exam-
ple, setting up cameras and recruiting volunteers requires
substantial community outreach efforts. Communities who
suffer from air pollution are often financially impoverished,
whose top priority might not be improving air quality. More-
over, air pollution issues are not as enjoyable as the topics
of other citizen science projects in astronomy (Lintott et al.
2008) or bird watching (Sullivan et al. 2009). Also, label-
ing industrial smoke emissions requires volunteers to under-
stand smoke behavior and is thus harder than recognizing
generic objects. We tackled the challenges by adopting com-
munity co-design, where the people who are impacted the
most participate in the design process. Understanding com-
munity expectations and concerns through conversations
(e.g., local meetings or workshops) is the key to building
mutual trust and sustaining community-powered projects.

Wicked Problems in Data Collection. Community-
powered projects like RISE suffer from the dilemma of
“Wicked Problems” (Rittel and Webber 1973): they have no
precise definition, cannot be fully observed initially, depend
on context, have no opportunities for trial and error, and
have no optimal or provably correct solutions. In this case,
multiple uncontrollable factors can affect the data and label
distribution. For instance, the availability of human labeling
power within citizen groups varies over time, as community
agenda changes often. Moreover, our system co-design and
data labeling processes happened simultaneously and iter-
atively, which meant the user interface changed at each de-
sign stage, and the amount of available data was incremental.
Also, we have no prior knowledge about the distribution of
smoke emission across time since obtaining such informa-
tion requires having profound knowledge about the pollu-
tion sources’ working schedule, which is not available. The

community dynamics and underlying uncertainty can lead to
imbalanced datasets. One could pursue crowdsourcing for
better data quality, but crowdsourcing relinquishes the op-
portunity to build informed communities that can take ac-
tion for social change. Making AI systems work under such
real-world constraints remains an open research question.

Integration of Citizen Science and Crowdsourcing.
Our analysis finds performance between volunteers and
MTurk workers to be similar, suggesting opportunities for
combining citizen science and crowdsourcing due to their
comparable reliability. For example, at the early stage of de-
velopment, one could recruit MTurk workers to label an ini-
tial small-scale dataset. Once the model is trained with the
initial dataset, one can use it to produce visual evidence that
can attract active citizen scientists. At this stage, the model
accuracy may not reach the desired level, and human inter-
vention may be required. However, as the community’s at-
tention starts to increase, it would be possible to collect more
labels and improve model performance over time. Also, as
the uncertainty in community dynamics can lead to imbal-
anced datasets, crowdsourcing can be a way to improve the
label distribution. We leave this to future work.

Limitations. Project RISE tackles Wicked Problems,
which means we can only make practical design decisions
based on available information at each design stage. These
practical but not optimal decisions lead to several limita-
tions. Comparing the reliability between citizens and MTurk
workers may be unfair due to the difference in their label-
aggregation logic. Also, models trained on our 19 views
from three facilities might not generalize well to other in-
dustrial facilities. Furthermore, RISE does not include night-
time videos, which are difficult to label due to insufficient
light. Moreover, our dataset does not offer bounding box la-
bels. We applied domain knowledge to define the locations
that smoke emissions were likely to occur, making smoke
recognition a classification rather than a detection problem.
Finally, there are other ways for aggregating labels pro-
vided by researchers and citizens, such as EM-based meth-
ods (Raykar et al. 2010). In our case, researchers always
overrode the decisions made by citizens. We leave the ex-
pansion of different label types and the methodology for ag-
gregation decisions from various user groups to future work.

Conclusion
Project RISE shows that, besides model performance, AI
systems’ social impact and ethics are also critical. We hope
to reinforce citizens’ voices and rebalance power relation-
ships among stakeholders through system design and de-
ployment. We have deployed the AI model to recognize
smoke. Community activists and health department officers
are working with our system to curate a list of severe pollu-
tion events as evidence to conduct air pollution studies. We
envision that our work can encourage others to keep com-
munities in the center of every AI system design stage. Com-
munities affected most by social or environmental problems
know their needs best and have active roles in our project.
By adopting community co-design, our work demonstrates
a way to forge sustainable alliances and shared prosperity
between academic institutions and local citizen groups.
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