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ABSTRACT
Developing information technology to democratize scientific
knowledge and support citizen empowerment is a challenging
task. In our case, a local community suffered from air pol-
lution caused by industrial activity. The residents lacked the
technological fluency to gather and curate diverse scientific
data to advocate for regulatory change. We collaborated with
the community in developing an air quality monitoring system
which integrated heterogeneous data over a large spatial and
temporal scale. The system afforded strong scientific evidence
by using animated smoke images, air quality data, crowd-
sourced smell reports, and wind data. In our evaluation, we
report patterns of sharing smoke images among stakeholders.
Our survey study shows that the scientific knowledge provided
by the system encourages agonistic discussions with regula-
tors, empowers the community to support policy making, and
rebalances the power relationship between stakeholders.
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INTRODUCTION
Air pollution is a critical environmental issue for people who
live near industrial sites. To address this problem, it takes
communities a great effort to gather scientific evidence at a
large spatial and temporal scale, which requires the assistance
of information technology in collecting, curating, and visual-
izing various types of data. In our case, 70,000 residents near
Pittsburgh suffer from air pollution caused by a coke (fuel)
plant. Under some unusual situations, the coke plant leaks
hazardous smoke irregularly, known as fugitive emissions (see
Figure 1), into the atmosphere. The resulting toxic emissions
with fine particulates pose risks to health and have negative
impacts to living quality [26, 46].
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Figure 1. This figure shows different types of fugitive emissions.

To address air pollution, residents formed the ACCAN (Al-
legheny County Clean Air Now) group. In several community
meetings, residents mentioned that adults and children devel-
oped respiratory problems because of exposure to coke oven
gas. In addition, residents must close windows at night be-
cause of irritating burning smells. They also said that the air
quality was so poor that they could not exercise outside. To
pursue environmental justice, the community took a series of
actions, such as gathering evidence of violations and filing
petitions to the government. They envisioned that these ac-
tions could raise public awareness about air quality issues and
pressure the government to deal with air pollution problems.

To advocate for themselves in improving the local air quality,
the community needed to gather convincing evidence in com-
municating with stakeholders. Traditionally, the community
collected scientific data manually, which was time-consuming,
error-prone, and offered limited scientific validity. The com-
munity lacked technological fluency and required the assis-
tance of experts in setting up an automatic system to collect
and archive data from various sources. Starting in January
2015, we aided the community to set up outdoor air qual-
ity sensors and live cameras pointed at the coke oven where
smoke usually occurred. We also created an electronic process
for capturing smell reports. To visualize hybrid data (sensor
readings, smell reports, real-time high resolution imagery, and
wind information), we developed a web-based air quality mon-
itoring system. Community members could use the system
to manually search for smoke in timelapse videos and use a
thumbnail generator to create animated images. But searching
and documenting all smoke emissions required manpower and
took an impractical investment of time. Therefore, we imple-
mented a computer vision tool to detect smoke and produce



Figure 2. The user interface of the web-based air quality monitoring system. The top-left part is a zoomable and pannable viewer which shows the
timelapse video. The bottom-left charts visualize crowdsourced smell reports, PM2.5 sensor readings, and automatic smoke detection results. The blue
line shows readings from the sensor operated by the local health department. The purple, green, and orange lines shows readings from six sensors that
we deployed in the community. The bottom-right map indicates wind speed (length of the blue arrow), wind direction (orientation of the blue arrow),
and sensor locations (bar charts). The colors and heights of bar charts on the map correspond to the colors and readings on the line charts respectively.

corresponding animated images (see Figure 4), which could
then be curated in online documents and shared on social me-
dia. With the monitoring system, community members could
tell stories with concrete scientific evidence about what hap-
pened (using animated smoke images) and how these events
affected the local neighborhood (using sensor readings, smell
reports, and wind information).

To evaluate community engagement, we analyzed the server
logs, which store HTTP requests of thumbnails from August
2015 to July 2016. In addition, we conducted a survey study
with the research question: does interacting with the air qual-
ity monitoring system increase community engagement in
addressing air pollution concerns? We anticipated that the
intervention of the system increases awareness, self-efficacy
[1, 7], and sense of community [40], which are the three
dependent variables in our survey study. Awareness means
participants know a problem exists and has impact on daily
lives. Self-efficacy means the strength of participants’ belief
in their ability to successfully reach the community’s goal.
Sense of community means participants feel they have influ-
ence in the community and a sense of belonging. We form
three corresponding hypotheses: interacting with the system
improves the ability to perceive air quality problems, strength-
ens the belief that the ACCAN community can reach its goal
of improving air quality, and makes people think that they are
influential and fit in the community. The independent variables
are involvement, age range, and education level. Involvement

is the level of participation, such as exploring, documenting,
and sharing data from the system.

In this paper, we explore the formation and use of scientific
knowledge in citizen empowerment via the intervention of
information technology. Our design principle is to stimulate
critical discussions and confront the current unbalanced power
relation between stakeholders. We begin by explaining the
research scope and reviewing similar projects. Then, we de-
scribe the design process and the implemented web-based air
quality monitoring system. In addition, we discuss the results
of smoke image usage from server logs and survey study. Fi-
nally, we provide insights in developing systems to empower
data-driven community action and conclude with limitations.
Our contributions are:

• Detailed documentation of a worked example which used
scientific data from heterogeneous sources to critically re-
veal, question, and challenge environmental conditions.

• Analysis of community behavior changes after the interven-
tion of information technology and participatory design.

• Analysis of how the community uses smoke images over a
long-term participation period (12 months).

• Insights for researchers to develop environmental monitor-
ing systems that combine politics, community, and informa-
tion technology.



RELATED WORK
Citizen science [24, 10] and sustainable human-computer in-
teraction [14, 18, 6, 2, 38] are growing trends in addressing
community concerns around local specific problems, such
as air pollution. The core idea is to empower amateurs and
professionals to produce scientific knowledge through public
engagement [50, 39], which is different from conventional
communication methods, such as newsletters or public hear-
ings. Scientific knowledge can contribute to the well-being
of communities and has two major values: science education
[10, 41, 52, 4, 11], which increases public understanding of
science by spreading knowledge among common people, and
participatory democracy [24, 20, 61, 55, 25], which promotes
the idea that citizens can participate in policy-making using
scientific evidence. Our work focuses on the latter.

Citizen science has various participation levels [3, 60, 21, 51].
They include defining problems, developing plans, providing
data, analyzing data, and making decisions. Consider partici-
pation along a spectrum from citizens as tools to citizens as
scientists. At one end, scientists treat volunteers as tools that
provide or interpret data, which is also called crowdsourcing.
One typical example is Galaxy Zoo [37], where participants
classify a large amount of galaxies online. At the other end, sci-
entists treat volunteers as collaborators over the entire project
life cycle. Our work takes the concept of citizens as scientists,
where volunteers and scientists establish a strong partnership
through collaboration and engagement.

Citizen science can be led by a central organization, multiple
stakeholders, or a community. These correspond to three gov-
ernance structures respectively: top-down, multi-party, and
bottom-up [9]. One example of the top-down approach is
The Neighborhood Networks Project [17, 16], a participatory
design practice which uses sensing technology to engage resi-
dents in collecting environmental data and making critical dis-
cussions about local environmental issues. The project is led
by researchers from an academic institution with pre-designed
public engagement procedures. In contrast, we collaborated
with the community via the bottom-up approach, where com-
munities themselves initiate, organize, and lead grassroots
movements about local specific issues. An example of the
bottom-up approach is the Bucket Brigade project [42], which
provides a low-cost device for citizens to measure their lo-
cal air quality. During our collaboration with the community,
besides applying the concept of citizens as scientists, which
asks what common people can do for professional scientists,
we emphasize the importance of scientists as citizens [24, 61,
55, 21], which asks what professional scientists can do for
common people. Our work explores how scientists can engage
in social and ethical issues that are promulgated by citizens.

Modern citizen science projects gain scientific knowledge at a
large spatial and temporal scale. This requires the investment
of information technology to collect, curate, and visualize
data from heterogeneous sources, such as video, sensors, and
crowds [4, 44]. Developing interactive computational tools to
improve technological fluency among citizen scientists and to
foster communication for participatory democracy is an ongo-
ing challenge [5, 39]. This research focuses on empowering

local communities in pursuing environmental justice collab-
oratively through the intervention of information technology,
which falls into the field of designing computational tools to
support democratizing scientific knowledge. The largest lim-
itation in prior work is that they often focus on either video,
sensor, or crowdsourced data. However, in our context, com-
munities need to interpret the cause and effect of emissions
from an identified pollution source. This requires collecting,
curating, visualizing, comparing, and making sense of hybrid
scientific data, which include live imagery, sensor readings,
image recognition results, smell reports, wind direction, and
wind speed. We are unaware of the existence of systems that
can tackle the complexity of data required for this task.

Understanding Video Data Using Crowdsourcing
There are tools which focus on understanding video data us-
ing crowdsourcing. SynTag [23] is a real-time collaborative
tagging system for labeling presentation videos. Audiences
can tag "good", "question", or "disagree" during or after the
presentation. These tags are shown on a line chart, which
provides indices for video segments. Glance [35] is a video
coding tool which asks crowdworkers on Mechanical Turk to
label small clips in parallel. Without searching the entire video,
users can use the aggregated crowdsourcing labels to quickly
identify events. Further extending this concept, Zensors [34]
is an image recognition tool using cameras on mobile devices,
which combines crowdsourcing and computer vision to an-
swer user defined questions. Initially, answers are provided by
workers on Mechanical Turk. The tool then uses these answers
as labels to train a computer vision classifier, which takes the
image recognition task when its accuracy reaches a threshold
for a certain period. These tools provide us with the concept
that using other data sources to index archived videos can help
users in making sense of video content efficiently.

Gathering and Managing Sensor Data
Other work focuses on gathering and managing sensor data.
Kuznetsov et al. in 2011 [30] developed a monitoring system
which involves low-cost air quality sensors and web-based
visualizations. In 2013, Kuznetsov et al. [31] designed a
bio-electronic soil sensor to detect bacterial activities and visu-
alized the data by using LED matrices and an LCD screen on
a wooden enclosure. Kuznetsov et al. in 2014 [32] presented
a low-tech and low-cost paper sensor for collecting particulate
pollution in the air. Kim et al. [28] described an indoor air
quality monitoring system in domestic environments. Tian et
al. [59] implemented a low-cost wearable sensor to measure
airborne particles and a mobile application for visualizing the
air quality data. These works emphasize studying the impact
after deploying sensors on multiple communities by analyz-
ing changes of user behaviors and ways that users interact
with technology. User studies show that sensing technology
with well-crafted visualizations can engage local communities
to participate in political activism using concrete scientific
evidence.

Collecting and Curating Crowdsourced Data
Several works focus on collecting and curating crowdsourced
data. Creek Watch [29] is a monitoring system which enables



collecting water flow and trash data in creeks via cameras on
mobile devices. EOL (Encyclopedia of Life) [48] is a platform
for curating biological content. Participants can comment and
make "trust," "untrust," or "hide" decision on data. Content
providers can then improve the data based on the collabora-
tive feedback. Sensr [27] is a framework for creating data
collection and management applications on mobile devices
without programming skills. Project managers can use the tool
to create a campaign website around a specific issue, such as
air quality, and community members can report data, such as
images, via a mobile application. eBird [56, 57] is a crowd-
sourcing tool for birdwatchers, scientists, and policy makers
to collect, store, visualize, and analyze bird data. These works
demonstrate that, beyond collecting data, it is important to
understand what data stakeholders need, how to make data
useful, and how to effectively deliver data. They consider tools
as an integrated system, which supports different levels of par-
ticipation, rather than individual and separate components.

DESIGN PROCESS AND CHALLENGES
Our main goal is to use information and communication tech-
nology to democratize scientific knowledge by empowering
citizens to collect and interpret data as evidence in taking po-
litical action. This falls in the context of design for democracy
[12], which has in general two opposing approaches: con-
sensus and agonism. The design principle of consensus is
to support structured deliberation. One project that uses the
consensus approach is eBird [56, 57], which is a tool for bird-
watchers, scientists, and policy makers to collect, visualize,
and analyze bird data collaboratively. Another example is the
Community Resource Messenger [36], which applies ubiqui-
tous computing at a shelter for homeless mothers to facilitate
the communication between staff and residents. In contrast,
our design principle is adversarial design [13], which is based
on agonism [43]. Adversarial design promotes critical politi-
cal discussions and challenges the current unbalanced power
structure between citizens, governments, and businesses. One
project that uses adversarial design is Feral Robot [33], which
is a low-cost mobile sensor for grassroots communities to
collect, map, and present chemical pollution data in a local
park. Our design purpose is not to support the mechanism
and procedure of governance, but to improve the condition of
society. The information technology is not used to solve the
environmental problem, but to provide technology affordance
[19] for seeking and revealing the condition (form, function,
economy, and time [45]) of the problem.

We began by participating in monthly community meetings to
understand the context of air pollution issues. The community
was taking a series of actions, such as reporting industrial
smells and filing petitions to the local health department and
the EPA (Environmental Protection Agency). Our roles were
as supporters, which use information technology to assist the
citizen-led grassroots movement around local air quality issues,
and as researchers, which study the effect of the technological
intervention.

The successfulness of the intervention of information technol-
ogy is highly dependent on community engagement [54], the
involvement of citizens in local neighborhoods. During initial

discussions with the community, we found that the most sig-
nificant gap in community engagement is the lack of scientific
evidence. For instance, it was difficult for residents to report
the exact time when an air quality violation occurred and its
environmental impact to government regulators. Therefore,
we proposed building an air quality monitoring system, which
could afford exploring, archiving, presenting, and sharing sci-
entific evidence among stakeholders.

The problem that the community dealt with is in nature wicked
[47, 8]. One characteristic of a wicked problem is that it
cannot be fully observed, which means that solving a subset
of a wicked problem reveals new ones. Based on this idea,
we argue that our work requires an iterative design approach
to handle and solve design challenges step by step. Thus,
we adopt the community-based participatory design approach
[15]. It is iterative in the sense that citizens and developers
explore design options collaboratively.

We collaborated closely with the community and implemented
system features based on iterative feedback from community
members. There were two major design challenges in setting
up the monitoring system. First, the community did not have
sufficient technological fluency. Our system had to curate and
visualize data in a way that users could easily perceive and doc-
ument the seriousness of smoke emissions and their impacts
to local neighborhoods. Second, this work had a timing issue,
where residents had to form and use strong scientific evidence
to convince regulators on a planned community meeting with
the local health department and the EPA. These challenges
served as constraints that affected our design decisions.

SYSTEM
We now explain system components together with three design
iterations, which naturally emerged during the design process.
The number of iterations depends on the complexity of the
wicked problem [47, 8] that the community tackles. Each
iteration contained system features which were implemented
based on the challenges revealed iteratively.

First Iteration:
Interactive Web-based Timelapse Viewer
Starting in January 2015, we installed a live camera which was
oriented towards the coke plant from a volunteer home. The
live camera takes a high quality image every 5 seconds for a to-
tal of 17,000 each day. We streamed the time-series imagery to
our servers and used an open source tool developed by Sargent
et al. [49] to process these images into multi-resolution video
tiles. The tool was implemented in JavaScript/HTML and
provided an interactive web-based timelapse viewer (top-
left part of Figure 2) where users could search for fugitive
emissions by panning, zooming, and playing the video. The
viewer loaded and showed the video tile corresponding to the
zoom and pan level. Users could share a particular view or use
the thumbnail tool to generate sharable animated images (see
Figure 3). After we developed the web-based viewer, commu-
nity members were excited and shared screenshots with each
other via emails. At that time, the community pointed out two
major challenges. Static images such as screenshots could not
represent the dynamics and persistent time quality of smoke



Figure 3. Clicking the share button on the timelapse viewer on the main
user interface (see Figure 2) shows the thumbnail tool, which is used for
generating sharable animated images. Users can edit the image size by
resizing the green box on the viewer. The dialog window provides ad-
justable parameters, such as starting time and duration of the animated
image.

emissions. In addition, although smoke images indicated the
source of air pollution, they did not show the impacts to local
air quality. These challenges led to the next design iteration.

Second Iteration:
Thumbnail Generator and Sensor Data Visualization
To address the emergent challenges, we implemented a thumb-
nail generator, which allowed community members to create
and document animated smoke images as visual evidence. We
also visualized PM2.5 (particle pollution) data from a sensor
station operated by the local health department. In addition,
we visualized smell reports which were collected via a Google
Form, only available to community members. In the form, we
asked community members to rate the severity of the pollution
odors from 1 to 5, with 5 being the worst. The form was dis-
seminated to the community via a Google Groups email and
phone calls. The visualization of air quality data and smell
reports showed how smoke emissions affected the living qual-
ity of the community. With these new features, residents
could compare smoke images together with sensor and crowd-
sourced data to identify correlations. We recorded a tutorial
video and taught residents how to use these features during
community meetings. The community was using the tool to
find, generate, and share animated smoke images. However,
searching smoke emissions manually from a large amount of
time-series imagery was laborious and time-consuming. More-
over, the government-operated sensor station reported data
only once per hour, which had difficulties in identifying air
quality changes over a shorter time period. Furthermore, the
lack of visualized wind data and sensor locations hindered
the ability to determine how pollutants affected the air quality
hyperlocally. These challenges again led to another design
iteration.

Third Iteration:
Citizen Sensors, Computer Vision Tool, and Map Visualization
To account for the challenges from the previous iteration, we
deployed six commercial air quality sensors [53, 58] in lo-
cal areas with finer time resolutions. These sensors reported

Figure 4. Clicking the image button on the line charts on the main user
interface (see Figure 2) shows web links and animated images produced
by the smoke detection algorithm. Users can quickly select representa-
tive images and insert them into an online document. Users can also
click on a peak of a spike on the line chart to seek to a video frame with
fugitive emissions.

PM2.5 data to our server via wireless Internet once per minute.
The location of sensors and the Internet services were pro-
vided by community volunteers. Furthermore, we developed
a computer vision tool based on an existing smoke detection
algorithm [22] for finding fugitive emissions automatically.
The algorithm identified the number of smoke pixels for each
video frame at daytime (bottom chart in Figure 4) and automat-
ically produced corresponding sharable animated images (see
Figure 4). We also added a map visualization for showing
wind direction, wind strength, and sensor locations (bottom-
right part of Figure 2). All sensor data and smoke detection
results were plotted on multiple charts (bottom-left part of
Figure 2). Users could use the charts as indicators for finding
unusual events such as fugitive emissions. Clicking on a smell
report or a peak of a spike on the chart jumped the video to
the corresponding time. Users could also click on the image
button near the smoke detection chart to bring up a dialog box
with animated smoke images, which could be shared via social
media or archived into a Google Doc.

The final design enabled community members to fully ex-
plore and compare data from heterogeneous sources (animated
smoke images, finer air quality data, crowdsourced smell re-
ports, and wind information). When residents noticed indus-
trial smells like sulfur, they could use the timelapse viewer to
check if the coke plant emitted smoke at a specific time. They
could then compare sensor readings, smell reports, and wind
data to verify if the emission came from the coke plant and
affected the local air quality. With the system, the community
could form and share convincing narratives grounded with
scientific evidence aggregated from hybrid data.

EVALUATION
Google Analytics evaluation of our website shows that from
August 2015 to July 2016 there were 542 unique users, which
contributed 1480 sessions. The average session duration was
three minutes. We now discuss the image usage study for
identifying how community members used animated images.
Then we present the results of the survey study.



Figure 5. Behavior of how far back in time a user viewed a human-
generated or algorithm-generated image compared to when it was taken.
The x-axis is the difference in days (denote D) between the dates that an
image was viewed and taken. Image views with small or large D mean
they are used for verifying if an event, such as fugitive emissions hap-
pened (e.g. fugitive emission) or reviewing previous events respectively.
While human-generated images were often viewed in less than one day
after events occur, algorithm-generated images were usually viewed at
least a week after the events.

Image Usage Study
We evaluated the usage patterns of animated smoke images
by parsing server logs. The logs stored HTTP requests of
images from our server over an 11-month period from August
2015 to July 2016. Each request contained the source IP
address, requested date, image URL, and browser type. Each
image URL indicated its bounding box, size, time, and dataset.
We first excluded all IP addresses from our research institute.
Then for each HTTP request, we subtracted the requested
date from the image taken date to get D, the difference in
days, which indicated how far back in time a user viewed an
image compared to when the image was taken. Table 1 shows
summary statistics of animated images and users. The number
of views of algorithm-generated images greatly exceeds the
ones of human-generated images. Next we discuss two sub-
studies which focus on images and users.

# of unique and viewed HG images 135
# of views of all HG images 477
# of unique and viewed AG images 6745
# of views of all AG images 11043
# of total views 11520
# of users who created HG images 32
# of users who viewed HG images 85
# of users who viewed AG images 75
# of total users 141

Table 1. Summary statistics of animated smoke images and users.
The "HG" and "AG" abbreviations mean "human-generated" and
"algorithm-generated" respectively. The "#" sign means "number of".
We can see that the number of views of algorithm-generated images
greatly exceeds the ones of human-generated images.

Figure 6. Number of views of human-generated or algorithm-generated
images which are aggregated by dataset date. From these two graphs,
we can see that the views of algorithm-generated images are more dis-
tributed across datasets, which means that users tend to use algorithm-
generated images to explore events in different dates.

Image-based Sub-study
For the image-based sub-study, we separated images into two
sets: created by human or created by the computer vision tool.
Then for each set, we aggregated the number of images, views,
viewed datasets, and users based on three criteria: viewing
date (date that the image was viewed), dataset date (date that
the image was taken), and D (difference in days). We now
present three interesting findings.

First, while human-generated images were suitable for initi-
ating community engagement, algorithm-generated images
were useful for maintaining community engagement. In Fig-
ure 5, we aggregated number of views based on D, difference
in days. The top graph in Figure 5 showed that a large por-
tion of views of human-generated images had small D, which
indicated a short period between when a user viewed an im-
age and when the image was taken. This suggested that our
users tended to create animated images manually by using the
thumbnail generator after a recent event (e.g. smoke emission),
which showed the purpose of initiating community engage-
ment. However, most of the views of algorithm-generated
images had high D (see the bottom graph in Figure 5). This
showed that community members tended to use images gen-
erated automatically by the computer vision tool to review
events occurring well beforehand, which demonstrated the
objective of maintaining community engagement.

Second, the computer vision tool encouraged community mem-
bers to explore more datasets. In Figure 6, we aggregated the
number of views based on dataset date, the time that the im-
age was taken. The top and bottom graphs in Figure 6 show
results for human-generated and algorithm-generated images
respectively. By comparing these graphs, the number of views
of algorithm-generated images were more distributed across
datasets than the ones of human-generated images, which were
concentrated on specific days.



Figure 7. Number of views of human-generated or algorithm-generated
images which are aggregated by viewing date. There is a significant de-
crease after January 2016, which was when the coke plant was closed.

Third, the existence of the coke plant was significant in moti-
vating the community to interact with the monitoring system.
In Figure 7, we aggregated the number of views based on view-
ing date, the time that image was viewed. The figure shows
that community members viewed much less human-generated
and algorithm-generated images after Jan 2016, which was the
time that the coke plant was closed.

User-based Sub-study
For the user-based sub-study, we aggregated the number of im-
ages, views, and viewed datasets based on unique IP addresses
to obtain a series of vectors. To find relationships, we com-
puted the correlation matrix of five vectors into the number of:
created human-generated images, viewed human-generated
images, viewed datasets in human-generated images, viewed
algorithm-generated images, and viewed datasets in algorithm-
generated images. We now summarize two findings.

First, there were strong correlations within the usage of human-
generated images. Community members who created more
images by using the thumbnail generator also viewed more
human-generated images (Pearson’s R Correlation = 0.91)
and explored more datasets (Pearson’s R Correlation = 0.89).
Moreover, community members who viewed more human-
generated images also explored more datasets (Pearson’s R
Correlation = 0.8).

Second, it appeared that there was no obvious relation-
ship between the usage of human-generated and algorithm-
generated images. Community members who created or
viewed more human-generated images did not necessarily
view more algorithm-generated images (Pearson’s R Correla-
tion = 0.13 and 0.07 respectively). Furthermore, there were no
strong correlations within the usage of algorithm-generated
images. Community members who viewed more algorithm-
generated images did not necessarily explore more datasets
(Pearson’s R Correlation = 0.35). The rhetorically compelling
power of human-generated data should not be underestimated.

18-24 25-34 35-44 45-54 55-64 64-74 75+ Sum
No degree 0 0 0 0 0 1 0 1
Bachelor 1 1 1 0 2 2 0 7
Master 0 0 2 2 2 3 0 9
Doctor 0 0 0 0 0 0 1 1
Sum 1 1 3 2 4 6 1 18

Table 2. Age and education level for the participants of 18 valid survey
responses. Participants have a high education level in general.

Survey Study
We now discuss the survey study for evaluating changes in the
community’s attitude after the intervention of our system.

Participants
ACCAN members were the primary users of the air quality
monitoring system. Adult volunteers (age 18 and older) were
recruited from these users through a Google Groups email.
The email described the research purpose and included a link
to an online survey. Paper surveys were also provided at a
community meeting. All responses were kept confidential and
there was no compensation. There was a brief consent script
to review before taking the survey. We received 24 responses
in total from 83 community members on the Google Groups
(29% response rate). One invalid response which contained
inconsistent answers and five incomplete ones were discarded.
Most of the participants had a high education level and were
over the age of 35 (see Table 2 for demographics).

Procedure and Materials
Participants filled out a survey. The survey was expected to
take less than 30 minutes and contained three question types.
The first type measured participants’ involvement in the com-
munity action, such as exploring, documenting, and sharing
data on the system. The second type measured community
engagement, which included Likert scale questions related to
the dependent variables: awareness, self-efficacy [1, 7], and
sense of community [40]. The third type asked demographics,
such as age range and education level. The range of the Likert
scale was from 1 to 5, with 5 being the highest attitude.

Analysis
In the survey, participants answered three questions about
how they explored, documented, or shared data by using the
system. These three questions contained 5, 3, and 4 choices
respectively. We summed up the number of choices that were
selected by participants in each question to obtain participa-
tion levels (see Figure 8). We also asked questions about the
frequency (from 1 to 5, with 5 being the highest frequency)
of browsing the data in the system after noticing bad smells,
number of people that a participant discussed the system with,
and number of monthly meetings (from 0 to 12) attended in
2015 (see Table. 3).

For a dependent variable, participants answered a question set
twice based on the time before (denote Sb

i ) and after (denote
Sa

i ) they learned about the air quality monitoring system. Each
question set had two Likert scale questions. We then averaged
the Likert scales in set Sb

i and Sa
i to obtain a pair of scores.

Figure 9 showed the difference of scores for each dependent
variable. Positive values indicated increases, and vice versa.



Figure 8. The boxplot of the participation level. We asked three multi-
choice questions related to how users explore, document, and share the
data provided by the system (the x-axis). These three questions had 5, 3,
and 4 choices respectively. We summed up the number of choices that
were selected by participants in each question to obtain participation
levels (the y-axis). In general, the users had high participation levels.

Browsing (Vb) People discussed (Vd) Meetings (Vm)
µ|σ 2.94|1.35 22.28|21.85 7.83|3.60

Table 3. The mean (µ) and standard deviation (σ ) of other independent
variables. Vb is the frequency (from 1 to 5, with 5 being the highest)
of browsing the data in the system after noticing bad smells. Vd is the
number of people that a participant discussed the system with. Vm is the
number of monthly community meetings (from 0 to 12) attended in 2015.
In general, participants were active in the community.

Our directional null hypotheses were that the community did
not have significant increases in awareness, self-efficacy, and
sense of community. Since the differences of our paired sam-
ples did not follow a normal distribution (see Figure 9), we
performed a right-tailed Wilcoxon signed-rank test, a nonpara-
metric version of paired t-test. Table 4 showed the p-values
and confidence interval.

Results
According to the analysis (see Table 4), the result favored the
alternative hypotheses, which claimed there were significant
increases (p < 0.05) in self-efficacy and sense of community
after interacting with the system. The average increases in
these two dependent variables were 0.53 and 0.56 respectively
in Likert scale. However, we retained the null hypothesis,
which stated there was no significant increase in awareness,
since p > 0.05 and the confidence interval contained zero.

Open-ended answers in surveys showed that the monitoring
system could encourage agonistic discussion with regulators
and empower the community in supporting local policy mak-
ing. With the system, community members could report con-
crete scientific evidence of fugitive emissions to the local
health department, such as animated smoke images and the
exact time of emissions, instead of vague reports.

"I made screenshots of the [system name] dashboard at
different times/days when wind was strong and in the di-
rection of my community. I inserted these screenshots into
Powerpoint slides. I shared printed versions of these
slides with my Township commissioner when asking for
assistance in reducing emissions."

"I continually spoke at regional meetings, City, County,
Health Department, Clairton, Lawrenceville, etc. Wrote

Figure 9. The boxplots of the changes of mental states among all partici-
pants after interacting with the monitoring system. The x-axis indicates
dependent variables. The y-axis is the differences in Likert scale. Posi-
tive values mean increases, and vice versa.

Awareness Self-efficacy Community sense
p-value 0.2500 0.0042 0.0010
CI 0.08+−0.15 0.53+−0.40 0.56+−0.38

Table 4. The p-value of right-tailed Wilcoxon signed-rank test and the
confidence interval on the differences of paired samples. CI indicates
95% confidence interval. Gray cells indicate statistical significance (p <
0.05) or the confidence interval which does not contain zero.

numerous letters to the editor, most did get published, not
all."

"I reported specific emissions from [coke plant name] to
ACHD. I was able to provide specific times so that ACHD
could review the exact episodes that I was reporting."

"I shared web links to the [system name] when I submit-
ted complaints to the health department"

"Confronted ACHD staffers repeatedly with ’uncomfort-
able’ info."

"I e-mailed images to others, including regulators."

Moreover, others mentioned that their confidence in taking
action was significantly improved after interacting with the sys-
tem. One important reason was that integrating heterogeneous
data (smoke images, air quality data, smell reports, and wind
information) formed strong scientific evidence, which was
powerful in communicating with regulators and thus changed
the power relationship between citizens and the government.

"I felt that the more information/proof that I made avail-
able might help justify my concern and spur action.
I felt that my concerns with what I was experiencing
were grounded in actual imagery, wind data and spa-
tial data."

"I believe that the [system name] was very important in
helping us get the attention of regulators (ACHD and
EPA) and get them to take our concerns seriously."

"The [system name] was one of the most important tools
the community has in holding the plant accountable. I
believe that images presented at the Nov. 2015 EPA
ACHD ACCAN meeting provided a tipping point for the
plant’s shutdown."



µ|σ
The timelapse video 4.81|0.54
Zooming in and out of the video 4.50|0.73
Sharing a web link of a view and time 4.43|0.85
Smell reports 4.38|0.81
Line charts showing sensor readings 4.31|0.87
The map showing sensor values 4.44|0.73
The thumbnail tool 4.19|0.83
The automatic smoke detection tool 4.31|0.70
Smoke images shown on the meeting with EPA 4.94|0.25

Table 5. The mean and standard deviation (µ|σ ) of the importance rat-
ing of features on the air quality monitoring system. In general, partici-
pants rated all features important.

"I believe that the [system name] images shown at the
November 2015 community meeting ’tipped the balance’
for the EPA and may have resulted directly in the closing
of [coke plant name]. In fact, without those images, it
may have taken years to close the plant."

In addition, several community members specifically iden-
tified the political and educational values of the monitoring
system. In addition, they showed a desire of reproducing the
monitoring system on other neighborhoods.

"Background as a environmental law paralegal."

"Fantastic educational tool."

"I would like to see similar monitoring of other pollu-
tion sites in Pittsburgh, ie. the [other coke plant name]
and others mentioned in the Toxic Ten listing."

DISCUSSION
The community that we collaborated with has fought for
decades to resolve the air pollution problem, which existed
since 1999. The monitoring system was launched in Fall
2015. In November 2015, the community held a meeting at
their local church with government officials from the ACHD
(Allegheny County Health Department) and the EPA. Dur-
ing the meeting, as information technology supporters, we
demonstrated the system and the visualization. In addition,
the community projected hundreds of animated smoke images
generated by the system on a large screen in front of ACHD
and EPA regulators. Community members described how their
living quality was affected by the air pollution together with
animated smoke images, air quality sensors, crowdsourced
smell reports, and wind data. The scientific knowlege demon-
strated how heavy air pollution flowed into the neighborhood.
The community successfully combined personal experiences
and scientific evidence into a story to convince regulators. The
story showed that the pollution source was the coke plant, and
its fugitive emissions acturally affected the local air quality.
This forced regulators to respond to the air quality problem
publicly. The acting director of the EPA from the Region III
Air Protection Division in Philadelphia pointed at the screen
and said: "But what I see in the video, is totally unacceptable."
In addition, the local air quality problem became available for
further debate and investigation. The administrator agreed that
the EPA would continue to review the coke works’ compliance

with the 2012 federal consent decree. Furthermore, on Decem-
ber 2015, the parent company of the coke works announced
the closure of the plant, which was the ultimate goal that the
community had tried to achieve for decades.

Insights
Based on the major community meeting described in the previ-
ous paragraph and the results presented in the previous section,
we now summarize our findings into three key insights and
offer suggestions to future researchers.

Use a Flexible and Iterative Design Process
We encourage using a flexible and iterative procedure instead
of a single and prescribed one. This practice is also mentioned
by DiSalvo et al. [16] as community co-design, a process
which involves community members when designing a system
that supports citizen empowerment. Often there are attempts
to duplicate successful systems in another similar real-world
context. However, this is unlikely to succeed because the envi-
ronmental problem that the community deals with is wicked
[47, 8]. Every wicked problem has no clear formulation, is
unique, and cannot be fully observed. Therefore, like the expe-
rience we describe in the design process and system sections,
we recommend scheduling multiple design phases to reveal
unique challenges and to apply specific solutions on these
challenges iteratively. In the survey study, participants rate the
importance of features of the system (see Table 5). The rating
scale is from 0 to 5, with 5 being the most important. The
average ratings are all above 4, which verifies that the iterative
design process help develop altogether useful system features
to the community.

Initiate and Maintain Community Engagement
It is critical to initiate and maintain community engagement
via actual participation in using the system. We recommend
combining manual and automatic approaches, which are the
thumbnail generator and the computer vision tool respectively
in this work, to serve two different purposes in citizen partici-
pation. First, a manual approach can initiate citizen participa-
tion and lead to follow-up interactions. The image usage study
shows that community members use the thumbnail generator
to manually create images after they notice unusual events
(see Figure 5), such as industrial smell or hazardous smoke.
Correlation analysis of image usage indicates that users who
create more images also view more images and explore more
datasets (see the User-based Sub-study subsection). Second,
an automatic approach can encourage community members
to participate in a long temporal horizon. Smoke images gen-
erated automatically by the computer vision tool are used for
reviewing fugitive emissions (see Figure 5). The computer
vision tool encourages community members to explore more
datasets (see Figure 6). However, it appears that there are no
clear correlations between the manual and automatic approach
(see the User-based Sub-study subsection). How to integrate
these two approaches seamlessly to open up and maintain
citizen participation remains an important research question.

Enable the Formation of Scientific Knowledge via Hybrid Data
Data requires being interpreted into scientific knowledge to
be impactful in changing unbalanced power relations between



citizens and governments. Besides collecting data, providing
affordance for citizens to make sense of the relationship among
various types of data is key to generating scientific knowledge.
We suggest integrating image, sensor, and crowdsourced data
from both human and machines into such a system. Analysis
in the survey study is limited by the small sample size of total
users, and this should be taken as a caveat in regards to anal-
ysis of statistical significance. Nonetheless, Figure 9 shows
the changes of participants’ attitudes and Table 4 includes
statistical significance findings in self-efficacy and sense of
community. Open responses in the survey show that with
scientific knowledge, citizens can present data in meaning-
ful ways to regulators who have the power to make policy
changes. At the meeting in November 2015, the community
successfully influenced the attitude of the government after
presenting the evidence. Scientific knowledge gives citizens
power to advocate for their living quality and to influence
other stakeholders.

Limitation
Measuring information and communication technology (ICT)
interventions in community advocacy is generally challenging.
Community advocacy has the ultimate goal of policy change,
yet it is difficult to causally prove how critical to a success-
ful policy change the communities’ actions have been. Such
projects succeed not only when policy goals are achieved, but
in how the relationship between citizens, policy makers, and
businesses evolves. This work shows that making scientific
data transparent to stakeholders can foster sustainable rela-
tionships among them. It is sustainable in the sense that the
system promotes a healthy and balanced power structure for
democracy in the long term. We believe patterns of scientific
data usage and changes of mental state among community
members are useful proxies for evaluating the effectiveness
of such projects. To better understand usage patterns, we sug-
gest tracking the usage of data in the system. Future research
about how to evaluate ICT interventions is still needed. For
instance, qualitative research, like in-depth interviews, will
be needed to identify key factors for successful collaboration
between stakeholders and to understand changes of power dy-
namics among citizens, scientists, developers, and regulators.
Moreover, forming scientific knowledge about the relation-
ship between the smoke emissions and the severity of the air
pollution by using the monitoring system currently relies on
human interpretation. Additional future research involves en-
hancing the knowledge by analyzing the correlations between
various types of data. The analysis can explain how these data
reinforce or conflict with each other, which provides strong
statistical scientific evidence.

Another limitation is that the sample size of participants in
the survey study is too small and the statistical analysis con-
clusion (see subsection Results) is weak. Participants only
represent a fraction of the population in the neighborhood
near the coke works. They have high education (see Table 2)
and involvement levels (see Table 3 and the left-most box-
plot in Figure 8), which includes interacting with the system,
discussing the system with others, and attending monthly com-
munity meetings. Most of them have strong activation before
learning about the monitoring system, which causes the failure

to reject the null hypothesis related to awareness (see Table 4).
The strong activation may also result in the high correlation
between community members who created and viewed smoke
images (see subsection User-based Sub-study). Nevertheless,
one alternative explanation of this limitation is that without
high awareness, it would be impossible to support commu-
nity advocacy with ICT interventions. In other words, high
awareness may be a necessary condition for successful citizen
empowerment. How attitude may change among people with
low education or low involvement level after interacting with
the air quality monitoring system still remain an open research
question.

Furthermore, the smoke detection algorithm used in the system
is tuned to operate in our settings. Currently, the algorithm
uses a heuristic method and has too many tuning parameters,
which is not robust enough for similar contexts for other com-
munities. One approach to generalize the system is to collect
crowdsourced labels via mobile or online platforms, which
requires deeper citizen participation. These labels can then be
used to train a smoke image classifier using machine learning.
Moreover, it appears that the existence of the coke plant is the
major source of motivation (see Figure 7). This crowdsourc-
ing approach may provide extra motivations to the community.
Besides collecting labels, organizing the hybrid scientific data
collected in the system into a comprehensive dataset can poten-
tially assist future academic research related to environmental
problems.

CONCLUSION
This paper presents a web-based air quality monitoring system
which integrates image, sensor, and crowdsourced data. It
is an instance of adversarial design [12, 13] which critically
reveals, questions, and challenges a real-world environmental
problem. The system provides technological affordance for
forming strong scientific evidence. We discuss the iterative
participatory design process that leads to decisions of system
features with the community. We describe our evaluation,
which includes an image usage study from server logs and a
survey study. The survey study indicates statistically signifi-
cant increases in self-efficacy and sense of community among
users after interacting with the system. Open responses in the
study show that the system promotes critical discussions with
policy makers and empowers citizens to participate in com-
munity actions. Based on the evaluation, we offer three key
insights about using an iterative design process, encouraging
community engagement, and forming scientific knowledge.
Finally, we mention limitations and future research directions
related to evaluating the intervention of information technol-
ogy, studying user behavior of community members with low
participation level, and generalizing the smoke detection al-
gorithm by collecting crowdsourced labels. We hope that this
work can inspire other researchers to contribute towards devel-
oping innovative information technology that supports citizen
empowerment.
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