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ABSTRACT
Urban air pollution has been linked to various human health consid-
erations, including cardiopulmonary diseases. Communities who
suffer from poor air quality often rely on experts to identify pol-
lution sources due to the lack of accessible tools. Taking this into
account, we developed Smell Pittsburgh, a system that enables
community members to report odors and track where these odors
are frequently concentrated. All smell report data are publicly ac-
cessible online. These reports are also sent to the local health de-
partment and visualized on a map along with air quality data from
monitoring stations. This visualization provides a comprehensive
overview of the local pollution landscape. Additionally, with these
reports and air quality data, we developed a model to predict upcom-
ing smell events and send push notifications to inform communities.
Our evaluation of this system demonstrates that engaging residents
in documenting their experiences with pollution odors can help
identify local air pollution patterns, and can empower communities
to advocate for better air quality.

CCS CONCEPTS
• Human-centered computing → Interactive systems and tools;
• Computing methodologies→ Machine learning.
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1 INTRODUCTION
Air pollution has been associated with adverse impacts on human
health, including respiratory and cardiovascular diseases [43, 72,
101, 105, 127]. Addressing air pollution often involves negotiations
between corporations and regulators, who hold power to improve
air quality. However, the communities, who are directly affected by
the pollution, are rarely influential in policy-making. Their voices
typically fail to persuade decision-makers because collecting and
presenting reliable evidence to support their arguments is resource-
intensive. Forming such evidence requires collecting and analyzing
multiple sources of data over a large geographic area and an ex-
tended period. This task is challenging due to the requirements of
financial resources, organizational networks, and access to technol-
ogy. Due to the power imbalance and resource inequality, affected
residents usually rely on experts in governmental agencies, aca-
demic institutions, or non-governmental organizations to analyze
and track pollution sources.

A straightforward solution is to empower the affected communi-
ties directly. In this research, we demonstrate how citizen science
can be used for communities to pool resources and efforts to gather
evidence for advocacy. Data-driven evidence, especially when inte-
grated with narratives, is essential for communities to make sense
of local environmental issues and take action [94]. However, citizen-
contributed data is often held in low regard because the information
can be unreliable or include errors during data entry. Also, suffi-
cient citizen participation and data transparency are required for
the evidence to be influential. For instance, the city involved in this
study, Pittsburgh, is one of the ten most polluted cities in the United
States [4]. Currently, Pittsburgh citizens report air quality problems
to the local health department via its phone line or website.

Nevertheless, the quality of the gathered data is doubtful. Citi-
zens may not remember the exact time and location that pollution
odors occurred. Asking citizens to submit complaints retrospec-
tively is hard for capturing accurate details and prone to errors.
Such errors can result in missing or incomplete data that can affect
the outcome of statistical analysis to identify pollution sources [36].
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Figure 1: The user interface of Smell Pittsburgh. The left image shows the submission console for describing smell character-
istics, explaining symptoms, and providing notes for the local health department. The right image shows the visualization of
smell reports, sensors, and wind directions.

Furthermore, the reporting process is not transparent and does
not encourage citizens to contribute data. There is no real-time
feedback or ways of sharing experiences to forge a sense of com-
munity. Without data that adequately represents the community, it
is difficult to know if an air pollution problem is at a neighborhood
or city-wide scale. This approach is inadequate for data collection
and hinders the participation in bringing air quality issues to the
attention of regulators and advocating for policy changes.

Because of these challenges, resident-reported smell data did
not gain much attention as a critical tool for monitoring air pollu-
tion. However, literature has shown that the human olfactory can
distinguish more than one trillion odors [23] and outperform sensi-
tive measuring equipment in odor detection tasks [116]. Although
there have been discussions about the potential of using smell to
indicate pollution events and support decision making [89, 91], no
prior works collected long-term smell data at a city-wide scale and
studied if these data are useful for air pollution monitoring and
community advocacy.

We propose a system, Smell Pittsburgh [2], for citizens to report
pollution odors to the local health department with accurate time
and GPS location data via smartphones. The system visualizes odor
complaints in real-time, which enables residents to confirm their
experiences by viewing if others also share similar experiences.
Additionally, we present a dataset of smell reports and air quality
measurements from nearby monitoring stations over 21 months [1].
We use the dataset to develop a model that predicts upcoming
pollution odors and send push notifications to users. We also apply
machine learning to identify relationships between smell reports

and air quality measurements. Finally, we describe qualitative and
quantitative studies for understanding changes in user engagement
and motivation. To the best of our knowledge, Smell Pittsburgh
is the first system of its kind that demonstrates the potential of
collecting and using smell data to form evidence about air quality
issues at a city-wide scale. Although stakeholders typically view
odor experiences as subjective and noisy, our work shows that smell
data is beneficial in identifying urban air pollution patterns and
empowering communities to pursue a sustainable environment.

2 RELATEDWORK
This research is rooted in citizen science, which empowers ama-
teurs and professionals to form partnerships and produce scientific
knowledge [16, 17, 46, 85, 114]. Historically, there exist both re-
search and community-oriented strategies [31]. Research-oriented
citizen science aims to address large-scale research questions which
are infeasible for scientists to tackle alone [14, 15, 28, 30, 39, 40, 86,
118]. Research questions under this strategy are often driven by
professional scientists. Researchers applying this strategy study
how scientists can encourage the public to participate in scien-
tific research. In contrast, community-oriented citizen science
aims to democratize science by equipping citizens with tools to
directly target community concerns for advocacy [26, 32, 53, 64, 67–
69, 92, 96, 119, 120, 128]. Research questions under this strategy
are often driven by community members, exploring how scientists
can engage in social and ethical issues that are raised by citizens or
communities. Our research focuses on the community-oriented
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approach. This approach is highly related to sustainable Human-
Computer Interaction [13, 20, 41, 42, 45, 84], which studies the in-
tervention of information technology for increasing the awareness
of sustainability, changing user behaviors, and influencing attitudes
of affected communities. We seek to generate scientific knowledge
from community data to support citizen-driven exploration, under-
standing, and dissemination of local air quality concerns.

2.1 Community Data in Citizen Science
Modern technology allows communities to collect data that can
contextualize and express their concerns. There are typically two
types of community data, which are generated from either sensors
or proactive human reports. Each type of data provides a small
fragment of evidence. When it comes to resolving and revealing
community concerns, human-reported data can show how expe-
riences of residents are affected by local issues, but it is typically
noisy, ambiguous, and hard to quantify at a consistent scale. Sensing
data can complement human-reported data by providing temporally
dense and reliable measurements of environmental phenomena but
fails to explain how these phenomena affect communities. With-
out integrating both types of data, it is difficult to understand the
context of local concerns and produce convincing evidence.

2.1.1 Human-Reported Data. Human-reported data includes obser-
vations contributed by users. Modern computational tools can col-
lect volunteered geographic information [57] and aggregate them to
produce scientific knowledge. However, most prior works focused
on collecting general information of particular interest, rather than
data of a particular type of human sense, such as odor. Ushahidi
gathers crisis information via text messages or its website to provide
timely transparent information to a broader audience [90]. Creek
Watch is amonitoring systemwhich enabled citizens to report water
flow and trash data in creeks [76]. Sensr is a tool for creating envi-
ronmental data collection and management applications on mobile
devices without programming skills [73, 74]. Encyclopedia of Life is
a platform for curating species information contributed by profes-
sionals and non-expert volunteers [112]. eBird is a crowdsourcing
platform to engage birdwatchers, scientists, and policy-makers to
collect and analyze bird data collaboratively [122, 123]. Tiramisu
was a transit information system for collecting GPS location data
and problem reports from bus commuters [130]. One of the few
examples focusing on information of a specific modality is Noise-
Tube, a mobile application that empowered citizens to report noise
via their mobile phones and mapped urban noise pollution on a
geographical heatmap [38, 83]. The tool could be utilized for not
only understanding the context of urban noise pollution but also
measuring short-term or long-term personal exposure.

2.1.2 Sensing Data. Sensing data involves environmental measure-
ments quantified with sensing devices or systems, which enable
citizens to monitor their surroundings with minimal to no assis-
tance from experts. However, while many prior works used sensors
to monitor air pollution, none of them complemented the sens-
ing data with human-reported data. MyPart is a low-cost and cal-
ibrated wearable sensor for measuring and visualizing airborne
particles [126]. Speck is an indoor air quality sensor for measuring

and visualizing fine particulate matter [124, 125]. Kim et al. im-
plemented an indoor air quality monitoring system to gather air
quality data from commercial sensors [75]. Kuznetsov et al. devel-
oped multiple air pollution monitoring systems which involved
low-cost air quality sensors and a map-based visualization [78, 79].
Insights from these works showed that sensing data, especially
accompanied by visualizations, could provide context and evidence
that might raise awareness and engage local communities to partic-
ipate in political activism. But none of these work asked users to
report odors, and thus can not directly capture how air pollution
affects the living quality of community members.

2.2 Machine Learning for Citizen Science
Citizen science data are typically high-dimensional, noisy, poten-
tially correlated, and spatially or temporally sparse. The collected
data may also suffer from many types of bias and error that some-
times can even be unavoidable [11, 22]. Making sense of such noisy
data has been a significant concern in citizen science [88, 93], espe-
cially for untrained contributors [17, 28, 35, 91]. To assist commu-
nity members in identifying evidence from large datasets efficiently,
prior projects used machine learning algorithms to predict future
events or interpret collected data [8, 11, 12, 58, 70, 71, 87].

2.2.1 Prediction. Prediction techniques aim to forecast the future
accurately based on previous observations. Zheng et al. developed
a framework to predict air quality readings of a monitoring sta-
tion over the next 48 hours based on meteorological data, weather
forecasts, and sensor readings from other nearby monitoring sta-
tions [129]. Azid et al. used principal component analysis and an
artificial neural network to identify pollution sources and predict
air pollution [6]. Donnelly et al. combined kernel regression and
multiple linear regression to forecast the concentrations of nitrogen
dioxide over the next 24 and 48 hours [44]. Hsieh et al. utilized a
graphical model to predict the air quality of a given location grid
based on data from sparse monitoring stations [63]. These studies
applied prediction techniques to help citizens plan daily activities
and also inform regulators in controlling air pollution sources. Most
of these studies focus on forecasting or interpolating sensing data.
To the best of our knowledge, none of them considered human-
reported data in their predictive models.

2.2.2 Interpretation. Interpretation techniques aim to extract knowl-
edge from the collected data. This knowledge can help to dis-
cover potential interrelationships between predictors and responses,
which is known to be essential in analyzing the impacts of environ-
mental issues in the long-term [19, 35]. Gass et al. investigated the
joint effects of outdoor air pollutants on emergency department
visits for pediatric asthma by applying Decision Tree learning [51].
The authors suggested using Decision Tree learning to hypothesize
about potential joint effects of predictors for further investigation.
Stingone et al. trained decision trees to identify possible interaction
patterns between air pollutants andmath test scores of kindergarten
children [121]. Hochachka et al. fused traditional statistical tech-
niques with boosted regression trees to extract species distribution
patterns from the data collected via the eBird platform [61]. These
previous studies utilized domain knowledge to fit machine learning
models with high explanatory powers on filtered citizen science



IUI ’19, March 17–20, 2019, Marina del Ray, CA, USA Hsu et al.

data. In this paper, we also used Decision Tree to explore hidden
interrelationships in the data. This extracted knowledge can reveal
local concerns and serve as convincing evidence for communities
in taking action.

3 DESIGN PRINCIPLES AND CHALLENGES
Our goals are (i) to develop a system that can lower the barriers
to contribute smell data and (ii) to make sure the data is useful in
studying the impact of urban air pollution and advocating for better
air quality. Each goal yields a set of design challenges.

3.1 Collecting Smell Data at Scale with Ease
Outside the scope of citizen science, a few works have collected
human-reported smell data in various manners. However, these
manners are not suitable for our projects. For example, prior works
have applied a smell-walking approach to record and map the land-
scape of smell experiences by recruiting participants to travel in
cities [59, 106, 107]. This process is labor intensive and hard for
long-term air quality monitoring. Hsu et al. has also demonstrated
that resident-reported smell reports, collected via Google Forms,
can form evidence about air pollution when combined with data
from cameras and air quality sensors [65, 66]. While Google Form is
usable for a small-size study, it would not be effective in collecting
smell reports on a city-wide scale with more than 300,000 affected
residents over several years. Therefore, we developed a mobile sys-
tem to records GPS locations and timestamps automatically. The
system is specialized for gathering smell data at a broad temporal
and geographical scale.

3.2 What is Useful Data? A Wicked Problem
There is a lack of research in understanding the potential of using
smell as an indicator of urban air pollution. Moreover, we recog-
nized that there are various methods of collecting, presenting, and
using the data. It is not feasible to explore and evaluate all possible
methods without deploying the system in the real-world context.
These challenges form a wicked problem [29, 111], which refers to
problems that have no precise definition, cannot be fully observed
at the beginning, are unique and depend on context, have no oppor-
tunities for trial and error, and have no optimal or “right” solutions.
In response to this challenge, our design principle is inspired by how
architects and urban designers address wicked problems. When
approaching a community or city-scale problem, architects and
urban planners first explore problem attributes (as defined in [98])
and then design specific solutions based on prior empirical experi-
ences. We made use of an existing network of community advocacy
groups, including ACCAN [3], GASP [50], Clean Air Council [24],
PennFuture [100], and PennEnvironment [99]. These groups were
pivotal in shaping the design of Smell Pittsburgh and providing
insights into how to engage the broader Pittsburgh community.

Moreover, to sustain participation, we visualized smell report
data on a map and also engage residents through push notifications.
To add more weight to citizen-contributed pollution odor report,
we engineered the application to send smell reports directly to the
Allegheny County Health Department (ACHD). This strategy en-
sured that the local health department could access high-resolution
citizen-generated pollution data to ascertain better and address

potential pollution sources in our region. We met and worked with
staff in ACHD to determine how they hoped to utilize smell report
data and adjusted elements of the application to better suit their
needs, such as sending data directly to their database and using
these data as evidence of air pollution. Based on their feedback,
the system submitted all smell reports to the health department,
regardless of the smell rating. This approach provided ACHD with
a more comprehensive picture of the local pollution landscape.

In summary, when developing Smell Pittsburgh, we considered
the system as an ongoing infrastructure to sustain communities
over time (as mentioned in [34]), rather than a software product
which solves a single well-defined problem. The system is designed
to influence citizen participation and reveals community concerns
simultaneously, which is different from observational studies that
use existing data, such as correlating air quality keywords from so-
cial media contents with environmental sensor measurements [49].

4 SYSTEM
Smell Pittsburgh is a system, distributed through iOS and Android
devices, to collect smell reports and track urban pollution odors.
We now describe two system features: (1) a mobile interface for sub-
mitting and visualizing odor complaints and (2) push notifications
for predicting the potential presence of odor events.

4.1 Submitting and Visualizing Smell Reports
Users could report odor complaints via Smell Pittsburgh from their
mobile devices via the submission console (Figure 1, left). To submit
a report, users first selected a smell rating from 1 to 5, with one being
“just fine” and five being “about as bad as it gets.” These ratings,
their color, and the corresponding descriptions were designed by
affected local community members to mimic the US EPAAir Quality
Index [47]. Also, users could fill out optional text fields where they
could describe the smell (e.g., industrial, rotten egg), their symptoms
related to the odor (e.g., headache, irritation), and their personal
experiences. Once a user submitted a smell report, the system sent
it to the local health department and anonymously archived it on
our backend database. Users could decide if they were willing to
provide their contact information to the health department through
the system setting panel. Regardless of the setting, our database
did not record the personal information.

The system visualized smell reports on a map that also depicted
fine particulate matter and wind data from government-operated
air quality monitoring stations (Figure 1, right). All smell reports
were anonymous, and their geographical locations were skewed to
preserve privacy. When clicking or tapping on the playback button,
the application animated 24 hours of data for the currently selected
day, which served as convincing evidence of air quality concerns.
Triangular icons indicated smell reports with colors that correspond
to smell ratings. Users could click on a triangle to view details of
the associated report. Circular icons showed government-operated
air quality sensor readings with colors based on the Air Quality
Index [47] to indicate the severity of particulate pollution. Blue
arrows showed wind directions measured from nearby monitoring
stations. The timeline on the bottom of the map represented the
concentration of smell reports per day with grayscale squares. Users
could view data for a date by selecting the corresponding square.
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4.2 Sending Push Notifications
Smell Pittsburgh sent post hoc and predictive event notifications
to encourage participation. When there were a sufficient number
of poor odor reports during the previous hour, the system sent
a post hoc event notification: “Many residents are reporting poor
odors in Pittsburgh. Were you affected by this smell event? Be sure to
submit a smell report!” The intention of sending this notification
was to encourage users to check and report if they had similar odor
experiences. Second, to predict the occurrence of abnormal odors in
the future, we applied machine learning to model the relationships
between aggregated smell reports and air quality measurements
from the past. We defined the timely and geographically aggregated
reports as smell events, which indicated that there would be many
high-rating smell reports within the next 8 hours. Each day, when-
ever the model predicted a smell event, the system sent a predictive
notification: “Local weather and pollution data indicates there may
be a Pittsburgh smell event in the next few hours. Keep a nose out
and report smells you notice.” The goal of making the prediction
was to support users in planning daily activities and encourage
community members to pay attention to the air quality. To keep the
prediction system updated, we computed a new machine learning
model every Sunday night based on the data collected previously.

5 EVALUATION
The evaluation shows that using smell experiences is practical for
revealing urban air quality concerns and empowering communities
to advocate for a sustainable environment. Our goal is to evaluate
the impact of deploying interactive systems on communities rather
than the usability (e.g., the time of completing tasks).We believe that
it is more beneficial to ask “Is the system influential?” instead
of “Is the system useful?” We now discuss three studies: (i) system
usage information of smell reports and interaction events, (ii) a
dataset for predicting and interpreting smell event patterns, and
(iii) a survey of attitude changes and motivation factors.

5.1 System Usage Study
In this study, we show the usage patterns on mobile devices by pars-
ing server logs and Google Analytics events. From our initial testing
with the community on September 2016 to the end of September
2018, we had about 5,790 and 1,070 installations (rounded to the
nearest 10) of Smell Pittsburgh on iOS and Android devices respec-
tively in the United States. We excluded data generated during the
system stability testing phase in September and October 2016. From
our soft launch in November 2016 to the end of September 2018 over
23 months, there were 3,917 unique anonymous users (estimated
by Google Analytics) in Pittsburgh. Our users contributed 17,280
smell reports, 582,108 alphanumeric characters in the submitted
text fields, and 163,609 events of interacting with the visualization
(e.g., clicking on icons on the map). Among all reports, 76% of them
had ratings greater than two.

To investigate the distribution of smell reports and interaction
events among our users, we divided all users into four types: enthu-
siasts, explorers, contributors, and observers (Table 1). Contributors
submitted reports but did not interact with the visualization. Ob-
servers interacted with the visualization but did not submit reports.
Enthusiasts submitted more than 6 reports and interacted with the

Table 1: Percentage (rounded to the first decimal place) and
the total size of user groups. Abbreviation “GA” means
Google Analytics. Characters mean the number of charac-
ters that user entered in the text fields of reports.

Users Smell
reports Characters GA Events

Enthusiasts 9.6% 52.6% 64.4% 47.7%
Explorers 40.4% 38.9% 29.3% 30.5%
Contributors 11.8% 8.5% 6.2% ...
Observers 38.2% ... ... 21.8%

Size (N) 3,917 17,280 582,108 163,609

Table 2: Statistics of user groups (median ± semi-
interquartile range), rounded to the nearest integer. Symbol
∀ means “for each.” Abbreviation “GA” means Google Ana-
lytics. Characters mean the number of characters that user
entered in the text fields of reports. Hours difference means
the number of hours between the hit and data timestamps.

Smell
reports
∀ user

Characters
∀ report

GA events
∀ user

Hours
difference
∀ event

Enthusiasts 16±8 18±20 117±87 10±18
Explorers 2±2 10±13 15±14 13±34
Contributors 1±1 10±14 ... ...
Observers ... ... 9±9 21±52

All 3±3 14±19 14±17 12±30

visualization more than 31 times. Thresholds 6 and 31 were the
median of the number of submitted reports and interaction events
for all users respectively, plus their semi-interquartile ranges. Ex-
plorers submitted 1 to 6 reports or interacted with the visualization
1 to 31 times. We were interested in four variables with different
distributions among user groups, which represented their charac-
teristics (Table 2). First, for each user, we computed the number
of submitted reports and interaction events. Then, for each smell
report, we calculated the number of alphanumeric characters in the
submitted text fields. Finally, for interaction events that involved
viewing previous data, we computed the time difference between
hit timestamps and data timestamps. These two timestamps repre-
sented when users interacted with the system and when the data
were archived respectively. Distributions of all variables differed
from normal distributions (normality test p<.001) and were skewed
toward zero.

The user group study showed highly skewed user contributions.
About 32% of the users submitted only one report. About 48%
and 81% of the users submitted less than three and ten reports
respectively, which aligned with the typical pattern in citizen sci-
ence projects that many volunteers participated for only a few
times [113]. Moreover, these three user groups differed regarding
the type and amount of data they contributed. Table 1 shows that
enthusiasts, corresponding to less than 10% of the users, contributed



IUI ’19, March 17–20, 2019, Marina del Ray, CA, USA Hsu et al.

Figure 2: Text analysis of high frequency words (unigram)
and phrases (bigram) in the text fields of all smell reports.
Most of them describe industrial pollution odors and symp-
toms of air pollution exposure, especially hydrogen sulfide
(rotten egg smell).

about half of the data overall. Table 2 indicates the characteristics of
these groups. Enthusiasts tended to contribute more smell reports,
the number of alphanumeric characters of reports, and interaction
events. Observers tended to browse data that were far away from
the interaction time. Further investigation of the enthusiast group
revealed a moderate positive association (Pearson correlation co-
efficient r=.50, n=375, p<.001) between the number of submitted
reports and the number of user interaction events.

To identify critical topics in citizen-contributed smell reports, we
analyzed the frequency of words (unigram) and phrases (bigram) in
the text fields. We used python NLTK package [10] to remove stop
words and group similar wordswith different forms (lemmatization).
Figure 2 shows that high-frequency words and phrases mostly
described industrial pollution odors and symptoms of air pollution
exposure, especially hydrogen sulfide that has rotten egg smell
and can cause a headache, dizziness, eye irritation, sore throat,
cough, nausea, and shortness of breath [33, 54, 82, 109]. This finding
inspired us to examine how hydrogen sulfide affected urban odors
in the next study.

5.2 Smell Dataset Study
In this study, we show that human-reported smell data, despite
noisy, can still enable prediction and contribute scientific knowl-
edge of interpretable air pollution patterns. We first constructed
and introduced a dataset with air quality sensor readings and smell

Figure 3: The distribution of smell reports on selected zip
code regions. The integers on each zip code region indicate
the number of reports.

Figure 4: The average smell values aggregated by hour of day
and day of week. Our users rarely submit smell reports at
nighttime.

reports fromOctober 31 in 2016 to September 27 in 2018 [1]. The sen-
sor data were recorded hourly by twelve government-operatedmon-
itoring stations at different locations in Pittsburgh, which included
timestamps, particulate matters, sulfur dioxide, carbon monoxide,
nitrogen oxides, ozone, hydrogen sulfide, and wind information (di-
rection, speed, and standard deviation of direction). The smell report
data contained timestamps, zip-codes, smell ratings, descriptions
of sources, symptoms, and comments. For privacy preservation,
we dropped the GPS location (latitude and longitude) of the smell
reports and used zip-codes instead.

We framed the smell event prediction as a supervised learning
task to approximate the function F that maps a predictor matrix
X to a response vector y. The predictor matrix and the response
vector represented air quality data and smell events respectively. To
build X , we re-sampled air quality data over the previous hour at
the beginning of each hour. For example, at 3 pm, we took the mean
value of sensor readings between 2 pm and 3 pm to construct a new
sample. Wind directions were further decomposed into cosine and
sine components. To equalize the effect of predictors, we normalized
each column of matrix X to zero mean and unit variance. Missing
values were replaced with the corresponding mean values.

To build y that represents smell events, we aggregated high-
rating smell reports over the future 8 hours at the beginning of
each hour. We specifically chose the geographic regions that have
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Figure 5: This figure shows true positives (TP), false posi-
tives (FP), and false negatives (FN). The x-axis represents
time. The blue and red boxes indicate ground truth and pre-
dicted smell events respectively.

sufficient amount of data during aggregation (Figure 3). For in-
stance, at 3 pm, we took the sum of smell ratings with values higher
than two between 3 pm and 11 pm to obtain a confidence score,
which represented agreements of how likely a smell event occurred.
The scores were further divided into positive and negative classes
(with or without smell events) by using threshold 40. In this way,
we simplify the task to a binary classification problem, with 64
predictor variables (columns of X ) and 16,766 samples (rows of X
and y). The distribution of classes was highly imbalanced (only
8% positive). Besides classification, we also applied a regression
approach to predict the confidence scores directly without thresh-
olding initially. Then the predicted scores were thresholded post
hoc with value 40 to produce positive and negative classes, which
enabled us to compare the performance of these two approaches.

When performing classification and regression, we added 3-hour
lagged predictor variables, days of the week, hours of the day, and
days of the month into the original predictor variable, which ex-
panded its length from 64 to 195. The lagged duration was chosen
during model selection. We implemented two models, Random For-
est [18] and Extremely Randomized Trees [52], by using python
scikit-learn package [97]. These algorithms build a collection of
decision trees using the CART algorithm [81], where the leaves
represent the responses y and the branches represent the logical
conjunction of predictors in X . There were three tunable model
parameters: the number of trees in the model, the number of fea-
tures to select randomly for splitting a tree node, and the minimum
number of samples required to split a tree node. For simplicity,
we fixed the number of trees (1,000 for classification and 200 for
regression) and chose other parameters during model selection.

To evaluate model performance, we defined and computed true
positives (TP), false positives (FP), and false negatives (FN) to ob-
tain precision, recall, and F-score [104] (Figure 5). We first merged
consecutive positive samples to compute the starting and ending
time of smell events. Then, if a predicted event overlapped with
a ground truth event, we counted this event as a TP. Otherwise,
we counted a non-overlapped predicted event as an FP. For ground
truth events that had no overlapping predicted events, we counted
them as FN. When computing these metrics, we considered only
daytime events because residents rarely submitted reports during
nighttime (Figure 4). We defined daytime from 5 am to 7 pm. Since

Table 3: Cross-validation of model performances (mean ±

standard deviation). We run this experiment for 100 times
with random seeds. Abbreviations “ET” and “RF” indicate
Extremely Randomized Trees and Random Forest respec-
tively, which are used for predicting upcoming smell events.
TheDecision Tree, different from the others, is for interpret-
ing air pollution patterns on a subset of the entire dataset.

Precision Recall F-score

For prediction:
Classification ET 0.87±0.01 0.59±0.01 0.70±0.01
Classification RF 0.80±0.02 0.57±0.01 0.66±0.01
Regression ET 0.57±0.01 0.76±0.01 0.65±0.01
Regression RF 0.54±0.01 0.75±0.01 0.63±0.01

For interpretation:
Decision Tree 0.73±0.04 0.81±0.05 0.77±0.04

the model predicted if a smell event would occur in the next 8 hours,
we only evaluated the prediction generated from 5 am to 11 am.

We chosemodel parameters by using time-series cross-validation
[5, 77], where the entire dataset was partitioned and rolled into
several pairs of training and testing subsets for evaluation. Because
our predictors and responses were all time-dependent, we used
previous samples to train the models and evaluated them on future
data. We first divided all samples into folds, with each fold approxi-
mately representing a week. Then, starting from fold 49, we took
the previous 48 folds as training data (about 8,000 samples) and the
current fold as testing data (about 168 samples). This procedure
was iterated for the rest of the folds, which reflected the setting
of the deployed system where a new model was trained on every
Sunday night by using data from the previous 48 weeks. Table 3
reports the evaluation metrics after cross-validating the models 100
times with various random seeds.

While these models enabled us to predict future smell events,
they were typically considered as black box models and not suit-
able for interpreting patterns. Although these models provided
feature importances, interpreting these weights could be problem-
atic because several predictors in the dataset were highly correlated,
which might appear less significant than other uncorrelated coun-
terparts. Inspired by several previous works related to extracting
knowledge from data [25, 51, 115], we utilized a white box model,
Decision Tree, to explain a representative subset of predictors and
samples, which were selected by applying feature selection [55] and
cluster analysis. One can view this process as performing model
compression to distill the knowledge in a large black box model
into a compact model that is explainable to human [21, 60].

During data interpretation, we only considered the classifica-
tion approach due to better performance. First, we used domain
knowledge to manually select features. As there were many highly
correlated features, selecting a subset of them arbitrarily for ex-
tracting patterns was impractical. The knowledge obtained from
informal community meetings and the result discovered in the text
analysis (Figure 2) suggested that hydrogen sulfide might be the
primary source of smell events. This finding inspired us to chose hy-
drogen sulfide, wind direction, wind speed, and standard deviation
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Figure 6: The right map shows smell reports and sensor readings with important predictors at 10:30 am on December 3, 2017.
The left graph shows the first five depth levels of the Decision Tree with F-score 0.81, which explains the pattern of about
50% smell events. The first line of a tree node indicates the ratio of the number of positive (with smell event) and negative
samples (no smell event). The second and third lines of the node show the feature and its threshold for splitting. The most
important predictor is the interaction between the east-west wind directions at Parkway and the previous 1-hour hydrogen
sulfide readings at Liberty (r=.58, n=16,766, p<.001), where r means the point-biserial correlation of the predictor and smell
events.

of wind direction from all of the other available predictors. The cur-
rent and up to 2-hour lagged predictor variables were all included.
Also, we added interaction terms of all predictors, such as hydrogen
sulfide multiplied by the sine component of wind direction. This
manual feature selection procedure produced 781 features.

Then, we used DBSCAN [48] to cluster positive samples and to
choose a representative subset. The distance matrix for clustering
was derived from a Random Forest fitted on the manually selected
features. For each sample pair, we counted the number of times that
the pair appeared in the same leaf for all trees in the model. The
numbers were treated as the similarity of sample pairs and scaled
to the range between 0 and 1. We converted the similarity s into
distance d by using d = 1 − s . This procedure identified a cluster
with about 25% of positive samples from 50% of the smell events.

Finally, we used recursive feature elimination [56] to remove 50
features that had the smallest weights iteratively, which resulted
in 30 most important features. These feature importance weights
were computed by fitting a Random Forest. We trained a Decision
Tree using the CART algorithm [81] to interpret the cluster and
the selected 30 features. Parameters for data interpretation (DB-
SCAN, Random Forest, and Decision Tree) were selected by using

cross-validation. Table 3 reports the evaluation metrics after cross-
validating the model for 100 times with random seeds. The result
showed that the model was capable of explaining the underlying
pattern of about 50% of the smell events, which was a joint effect
of wind information and hydrogen sulfide readings (Figure 6).

5.3 Survey Study
In this study, we show that the system can motivate active com-
munity members to contribute data and increase their self-efficacy,
beliefs about how well an individual can achieve desired effects
through actions [7]. We recruited adult participants via snowball
sampling [9]. We administered and delivered an anonymous online
survey via email to community advocacy groups and asked them to
distribute the survey to others. Paper surveys were also provided.
All responses were kept confidential, and there was no compen-
sation. We received 29 responses in total over one month from
March 20th to April 20th, 2018. Four responses were excluded due
to incomplete questions or no experiences in interacting with the
system, which gave 25 valid survey responses. There were 8 males,
16 females, and 1 person with undisclosed gender information. All
but one participant had a Bachelor’s degree at minimum. The de-
mographics of the sample population (Table 4) were not typical for
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Table 4: Demographics of participants. Columns and rows
represent ages and education levels.

18-24 25-34 35-44 45-54 55-64 65-74 Sum

Associate 0 0 1 0 0 0 1
Bachelor 2 2 2 0 1 1 8
Master 0 2 2 0 0 4 8
Doctoral 0 1 1 1 5 0 8
Sum 2 5 6 1 6 5 25

Table 5: Frequency of system usage (sorted by percentage).

Count Percentage

Other (the open-response text field) 9 36%
At least once per month 7 28%
At least once per week 4 16%
At least once per day 3 12%
At least once per year 2 8%

the region. The survey had three sections: (1) Self-Efficacy Changes,
(2) Motivation Factors, (3) System Usage Information.

For Self-Efficacy Changes, we measured changes to user confi-
dence mitigating air quality problems. This section was framed as
a retrospective pre-post self-assessment. The items were divided
between pre-assessment, “BEFORE you knew about or used Smell
Pittsburgh,” and post-assessment, “AFTER you knew about or used
Smell Pittsburgh.” For both assessments, we used a scale developed
by the Cornell Lab of Ornithology [37, 103]. The scale was cus-
tomized for air quality to suit our purpose. The scale consisted of
eight Likert-type items (from 1 “Strongly Disagree” to 5 “Strongly
Agree”).

TheMotivation Factors sectionwas based on a scale developed by
the Cornell Lab of Ornithology [37, 102] with 14 Likert-type items
(from 1 “Strongly Disagree” to 5 “Strongly Agree”). The scale was
customized for air quality and measured both internal (7 items) and
external motivations (7 items). Examples of internal motivations
included enjoyment during participation and the desire to improve
air quality. Examples of external motivations included the attempt
to gain rewards and to avoid negative consequences if not taking
actions. A text field with question “Are there other reasons that
you use Smell Pittsburgh?” was provided for open responses.

In the System Usage Information section, we collected individual
experiences with Smell Pittsburgh. We documented participation
level through a multiple-choice and multiple-response question,
“How did you use Smell Pittsburgh?” as shown in Figure 7 (right).
This question allowed participants to select from a list of 11 activi-
ties, which include submitting reports, interacting with the system,
sharing experiences, and disseminating data (Table 6). We identified
the frequency of system usage through a multiple-choice question,
“How often do you use Smell Pittsburgh?” as shown in Table 5. Text
fields were provided for both of the above two questions.

At the end of the survey, we asked an open-response question
“Do you have any other comments, questions, or concerns?” Our
analysis is presented below along with each related question and

Figure 7: The distributions of self-efficacy changes, motiva-
tions, and participation level for our survey responses. The
red lines in the middle of the box indicate the median. The
red-filled diamonds represent the mean. The top and bot-
tom edges of a box indicate 75% (Q3) and 25% (Q1) quantiles
respectively. The boxes show inter-quantile ranges IQR =
Q3−Q1. The top and bottomwhiskers showQ3+1.5∗IQR and
Q1+1.5∗IQR respectively. Black hollow circles show outliers.

selected quotes. Bold emphases in the quotes were added by re-
searchers to highlight key user sentiments.

For Self-Efficacy, we averaged the scale items to produce total
self-efficacy pre score (Mdn=3.50) and post score (Mdn=4.13) for
each participant (Figure 7, left). A two-tailed Wilcoxon Signed-
Ranks test (a nonparametric version of a paired t-test) indicated a
statistically significant difference (W=13.5, Z=-3.79, p<.001). This
finding indicated that there were increases in self-efficacy during
participation.

For Motivation Factors, we averaged the internal (Mdn=4.29) and
external (Mdn=3.14) motivation scores for each participant (Fig-
ure 7, center). A two-tailed Wilcoxon Signed-Ranks test indicated
a statistically significant difference (W=0, Z=-4.29, p<.001). This
result suggested that internal factors were primary motivations for
our participants rather than external factors. Open-ended answers
showed that nine participants (36%) mentioned that the system
enabled them to contribute data-driven evidence efficiently and
intuitively.

“I used to try to use the phone to call in complaints,
but that was highly unsatisfactory. I never knew if
my complaints were even registered. With Smell Pitts-
burgh, I feel that I’m contributing to taking data,
as well as to complaining when it’s awful. [...]”
“It’s seems to be the most effective way to report
wood burning that can fill my neighborhood with
the smoke and emissions from wood burning.”
“The Smell appquantifies observations in real time.
Researchers can use this qualitative information along
quantitative data in real time. Added benefit is to have
[the health department] receive this information in
real time without having to make a phone call
or send separate email. I have confidence that the
recording of Smell app data is quantified more ac-
curately than [the health department]’s.”
“It is an evidence based way for a citizen to register
what is going on with the air where I live and work.”
“I believe in science and data and think this can help
build a case. [...]”
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Table 6: The multiple-choice question for measuring participation level (sorted by percentage).

Count Percentage

I submitted smell reports. 22 88%
I checked other people’s smell reports on the map visualization. 22 88%
I opened Smell Pittsburgh when I noticed unusual smell. 22 88%
I discussed Smell Pittsburgh with other people. 21 84%
I provided my contact information when submitting smell reports. 14 56%
I paid attention to smell event alert notifications provided by Smell Pittsburgh. 13 52%
I shared Smell Pittsburgh publicly online (e.g. email, social media, news blog). 13 52%
I clicked on the playback button to view the animation of smell reports. 9 36%
I took screenshots of Smell Pittsburgh. 9 36%
I mentioned or presented Smell Pittsburgh to regulators. 6 24%
I downloaded smell reports data from the Smell Pittsburgh website. 4 16%

Also, four participants (16%) indicated the benefit to validate per-
sonal experiences based on the data provided by others.

“I used to (and sometimes still do) call reports in to
[the health department]. I love how the map displays
after I post a smell report.Wow! I’m not alone!”
“It validates my pollution experiences because
others are reporting similar experiences.”
“I like using it for a similar reason that I like checking
the weather. It helps me understand my environment
and confirms my sense of what I’m seeing.”

We also found that altruism, the concern about the welfare of others,
was another motivation. Six participants (24%) mentioned the desire
to address climate changes, activate regulators, raise awareness of
others, expand air quality knowledge, influence policy-making, and
build a sense of community.

“Because climate change is one of our largest chal-
lenges, [...] Also, the ACHD isn’t as active as they
should be, and needs a nudge.”
“I use [Smell Pittsburgh] to demonstrate to others
how they can raise their own awareness. I’ve also
pointed out to others that many who have grown up
in this area of Western PA have grown up with so
much pollution, to them air pollution has become
normalized and many do not even smell the pol-
lution any more. This is extremely dangerous and
disturbing.”
“I want to help expand the knowledge and edu-
cation of air quality in Pittsburgh and believe the
visuals Smell Pittsburgh provides is the best way to
do that.”
“I believe in the power of crowd-sourced data to in-
fluence policy decisions. I also believe that the air
quality activism community will find more willing
participants if there is a very easy way for non-
activists to help support clean air, and the app
provides that mechanism. It is basically a very easy
onramp for potential new activists. The app also
acts as a way for non-activists to see that they are not

alone in their concerns about stinky air, which I be-
lieve was a major problem for building momentum
in the air quality community prior to the app’s
existence.”

For System Usage Information, we reported the counts for system
usage frequency questions (Table 5). The result showed that our
users had awide variety of system usage frequency. Open-responses
indicated that instead of using the system regularly, eight partic-
ipants (32%) only submitted reports whenever they experienced
poor odors. To quantify participation levels, we counted the number
of selected choices for each participant, as shown in Figure 7 (right).
We found that our participation levels were normally distributed. In
the open-response text field for this question, two participants (8%)
mentioned using personal resources to help promote the system.

“I ran a Google Adwords campaign to get people
to install Smell Pittsburgh. It turns out that about
$6 of ad spending will induce someone to install the
app.”
“I take and share so many screenshots! Those are
awesome. [...] I alsomade two large posters of the
app screen– one on a very bad day, and one on a very
good day. I bring them around to publicmeetings
and try to get county officials to look at them.”

In the open-ended question to freely provide comments and con-
cerns, two participants (8%) were frustrated about the lack of re-
sponses from regulators and unclear values of using the data to
take action.

“After using this app for over a year, andmakingmany
dozens of reports, I haven’t once heard from the
[health department]. That is disappointing, and
makes me wonder, why bother? [...] Collecting this
data is clever, but towards what end? I sometimes
don’t see the point in continuing to report.”
“It wasn’t clear when using the app that my sub-
mission was counted [...]. I want to be able to see
directly that my smell reports are going somewhere
and being used for something. [...]”

Also, five (20%) participants suggested augmenting the current
systemwith new features and offering this mobile computing tool to
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more cities. Such features involved reporting smell retrospectively
and viewing personal submission records.

“I get around mostly by bike, so it is difficult to
report smells the same moment I smell them. I wish I
could report smells in a different location than where
I am so that I could report the smell once I reach
my destination.”
“It would be nice to be able to add a retroactive
report. We often get the strong sulfur smells in Forest
Hills in the middle of the night [...] but I strongly
prefer to not have to log in to my phone at 3 am
to log the report as it makes it harder to get back to
sleep.”
“This app should let me see/download all of my
data: how many times I reported smells, what my
symptoms and comments were and how many times
the [health department] didn’t respond [...]”

6 DISCUSSION
We have shown that the smell data gathered through the system is
practical in identifying local air pollution patterns. We released the
system in September 2016. During 2017, the system collected 8,720
smell reports, which is 10-fold more than the 796 complaints col-
lected by the health department regulators in 2016. All smell reports
in our system had location data, while the location information was
missing from 45% of the regulator-collected complaints. Although
there is a significant increase in data quantity (as described in the
system usage study), researchers may criticize the reliability of the
citizen-contributed data, since lay experiences may be subjective,
inconsistent, and prone to noise. Despite these doubts, in the smell
dataset study, we have applied machine learning to demonstrate
the predictive and explainable power of these data. It is viable to
forecast upcoming smell events based on previous observations.
We also extracted connections between predictors and responses
that reveal a dominant local air pollution pattern, which is a joint
effect of hydrogen sulfide and wind information. This pattern could
serve as hypotheses for future epidemiological studies. Since users
tended not to report when there is no pollution odor, we recom-
mend aggregating smell ratings by time to produce samples with
no smell events. According to the experiments of different models,
we suggest using the classification approach by thresholding smell
ratings instead of the regression approach. In reality, the effect of
10 and 100 smell reports with high ratings may be the same for
a local geographical region. It is highly likely that the regression
function tried to fit the noise after a certain threshold that indicates
the presence of a smell event.

We have also shown that the transparency of smell data empow-
ered communities to advocate for better air quality. The findings
in the survey study suggested that the system lowered the barrier
for communities to contribute and communicate data-driven ev-
idence. Although the small sample size limited the survey study,
the result showed increases in self-efficacy after using the system.
Several participants were even willing to use their resources to
encourage others to install the system and engage in odor report-
ing. Moreover, in July 2018, activists attended the Board of Health
meeting with the ACHD (Allegheny County Health Department)

and presented a printed 230-foot-long scroll of more than 11,000
complaints submitted through the system. These reports allowed
community members to ground their personal experiences with
concrete and convincing data. The presented smell scroll demon-
strated strong evidence about the impact of air pollution on the
living quality of citizens, which forced regulators to respond to the
air quality problem publicly. The deputy director of environmen-
tal health mentioned that ACHD would enact rigorous rules for
coke plants: “Every aspect of the activity and operation of these coke
plants will have a more stringent standard applied [27, 62].” In this
case, Smell Pittsburgh rebalanced the power relationships between
communities and regulators.

6.1 Limitation
We have explained the design, deployment, and evaluation of a mo-
bile smell reporting system for Pittsburgh communities to collect
and visualize odor events. However, our survey study only targeted
community activists, which led to a relatively small sample size.
The commitment of these users may be driven by internal motiva-
tions, such as altruism, instead of the system. Also, due to system
limitations in tracking user behaviors and the sparsity of air pol-
lution events, we leave the analysis of whether push notifications
encourage user engagement to future work. Additionally, our com-
munity members might be unique in their characteristics, such as
the awareness of the air quality problem, the tenacity of advocacy,
and the power relationships with other stakeholders. Involving
citizens to address urban air pollution collaboratively is a wicked
problem by its nature, so there is no guarantee that our success and
effectiveness can be replicated in a different context. It is possible
that interactive systems like Smell Pittsburgh can only be practical
for communities with specific characteristics, such as high aware-
ness. Future research is needed to study the impact of deploying
this system in other cities that have similar or distinct community
characteristics compared to Pittsburgh. It can also be beneficial to
explore ways to connect citizens and regulators, such as visualizing
smell reports by voting districts, providing more background infor-
mation with demographics and industry data, and sending push
notifications regarding health agency public meetings.

Furthermore, from a machine-learning standpoint, community-
powered projects such as Smell Pittsburgh often face two challenges
that compromise model performances: data sparsity and label un-
reliability. Recent research has shown that deep neural networks
can predict events effectively when equipped with a significant
amount of training data [80]. However, the number of collected
smell reports are far away from such level due to the limited size of
the community and active users. The participated 3,917 users out
of the 300,000 residents (1.3%) is not sufficient to cover the entire
Pittsburgh area. Additionally, in our case, air pollution incidents
can only be captured at the moment because our communities lack
resources to deploy reliable air quality monitoring sensors. It is
impractical to annotate these incidents off-line such as in Galaxy
Zoo [108]. While adopting transfer learning could take advantage
of existing large-scale datasets from different domains to boost our
performance [95], data sparsity is a nearly inevitable issue that
must be taken into consideration for many community-powered
projects. Another issue is the label unreliability. There is no real
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“ground truth” air pollution data in our case. The smell events de-
fined in this research were based on the consensus from a group
of users. As a consequence, the quality of the labels for the predic-
tion and interpretation task could be influenced by confirmation
bias, where people tend to search for information that confirms
their prior beliefs. Such type of systematic error may be difficult to
avoid, especially for community-powered projects. Future work to
address these two challenges involves adding more predictors (e.g.,
weather forecasts, air quality index) and using generalizable data
interpretation techniques that can explain any predictive model to
identify more patterns [110].

7 CONCLUSION
This paper explores the design and impact of a mobile smell report-
ing system, Smell Pittsburgh, to empower communities in advocat-
ing for better air quality. The system enables citizens to submit and
visualize odor experiences without the assistance from profession-
als. The visualization presents the context of air quality concerns
from multiple perspectives as evidence. In our evaluation, we stud-
ied the distribution of smell reports and interaction events among
different types of users. We also constructed a smell event dataset
to study the value of these citizen-contributed data. By adopting
machine learning, we developed a model to predict smell events and
send push notifications accordingly. We also trained an explainable
model to reveal connections between air quality sensor readings
and smell events. Using a survey, we studied motivation factors for
submitting smell reports and measured user attitude changes after
using the system. Finally, we discussed limitations and future direc-
tions: deploying the system in multiple cities and using advanced
techniques for pattern recognition. We envision that this research
can inspire engineers, designers, and researchers to develop systems
that support community advocacy and empowerment.
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8 CORRECTIONS
We found errors in the system usage study and the analysis of the air
pollution patterns when discussing this research with a colleague.
We apologize for the errors in this paper, and this section describes
the corrections. These errors do not affect the conclusions.

8.1 System Usage Study
In the caption of Table 2, and also in the second paragraph of
section 5.1 (System Usage Study), the “interquartile range” texts
should be “semi-interquartile range.”

8.2 Smell Dataset Study
The followings provide the corrections for the last two paragraphs
in section 5.2 (Smell Dataset Study). Figure 6 should be replaced by
Figure 8, and Table 3 should be replaced by Table 7. We also added
a new reference [117] and a new table (Table 8).

[Correction for the second to the last paragraph in sec-
tion 5.2] Then, we used DBSCAN [48] to cluster positive samples
and to choose a representative subset. The distance matrix for
clustering was derived from a Random Forest in an unsupervised
manner, as described in [117]. The goal was to construct another
synthetic dataset and use both datasets to predict if a data sam-
ple came from the original one. For each predictor in the original
dataset, we sampled the predictor values for n times uniformly at
random (with replacement) and put the values in the synthetic
dataset for the corresponding predictor, where n is the size of the
original dataset. After fitting the model, for each sample pair, we
counted the number of times that the pair appeared in the same
leaf for all trees in the model. The numbers were treated as the
similarity of sample pairs, and we scaled the similarity by dividing it
with the number of trees in the model. We converted the similarity
s into distance d by using d = 1 − s . This procedure identified a
cluster with about 25% of positive samples.

[Correction for the last paragraph in section 5.2] Finally,
we used recursive feature elimination [56] to remove 50 features
that had the smallest weights iteratively, which resulted in 30 most
important features. These feature importance weights were com-
puted by fitting a Random Forest. We trained a Decision Tree using
the CART algorithm [81] to interpret the cluster and the selected
30 features. Parameters for data interpretation (DBSCAN, Random
Forest, and Decision Tree) were selected by using cross-validation.
Table 8 reported the evaluation metrics after running the data inter-
pretation pipeline for 100 times, including the cluster analysis and
recursive feature elimination. The result showed that the model
explains the underlying pattern of about 30% of the smell events,
which was a joint effect of wind information and hydrogen sulfide
readings. Figure 8 indicated the model and the most important two
features, which were consistent for 99 times, out of the total 100
times experiment.

Table 7: Cross-validation of model performances (mean ±

standard deviation) on the testing set for daytime. We run
this experiment for 100 times with random seeds. Abbrevia-
tions “ET” and “RF” indicate Extremely Randomized Trees
and Random Forest respectively, which are used for predict-
ing upcoming smell events.

Precision Recall F-score

Classification ET 0.87±0.01 0.59±0.01 0.70±0.01
Classification RF 0.80±0.02 0.57±0.01 0.66±0.01
Regression ET 0.57±0.01 0.76±0.01 0.65±0.01
Regression RF 0.54±0.01 0.75±0.01 0.63±0.01

Table 8: Cross-validation of model performances (mean ±

standard deviation) on the training and testing set for day-
time. We run this experiment for 100 times, including both
the cluster analysis and recursive feature elimination. The
Decision Tree is used for interpreting air pollution patterns
on a subset of the entire dataset.

Precision Recall F-score Phase

Decision Tree 0.79±0.00 0.86±0.03 0.82±0.01 training
Decision Tree 0.49±0.01 0.62±0.04 0.54±0.03 testing

https://doi.org/10.1145/2783258.2788573
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Figure 8: The right map shows smell reports and sensor readings at 10:30 am on December 3, 2017. The left graph shows one
example of the Decision Tree, which explains the pattern of about 30% smell events. Each tree node indicates the ratio of the
number of positive (with smell event) and negative samples (no smell event). The most important feature is the interaction
between the current north-southwind directions at Lawrenceville and the previous 1-hour hydrogen sulfide readings at Liberty
(r=.58,p<.001,n=16,694), wherepmeans the p-value,nmeans the number of samples, and r means the point-biserial correlation
of the predictor and smell events. The second-most important feature is the interaction between the current east-west wind
directions at Parkway and the current hydrogen sulfide readings at Liberty (r=.54, p<.001, n=16,694). The corresponding Gini
importance for the most and the second-most important features are 0.42±0.02 and 0.10±0.00, respectively, in the format of
“mean ± standard deviation” for the 100-times experiment.
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